• Biological adaptation to heavy water

    1. Actuality of the work proposed.

    1.1. Deuterium (2H), the hydrogen isotope with mass 2, was discovered by Urey. In the years immediately following this discovery, there developed a keen interest in a biological enrichment of a cell with 2H, which resulted in a miscellany of rather confusing data (Katz J., Crespy H. L. 1972). The main conclusion that can be derived from the most competent and comprehensive of the early studies is that high concentrations of 2H2O are incompatible with life and reproduction. Nevertheless, a many cells could be quite well adapted to 2H2O, so that a discussion about the role of macromolecules in biolodical adaptation to 2H2O is still actual through more than four decades of years after the first description of the biological consequences of hydrogen replacement by deuterium.

  • BRIEF RESUME OF THE RESEARCH

    First, in frames of the biological research with deuterium the studies of incorporation of deuterium into the macromolecules are necessary. A biosynthetic introduction of deuterium in conjunction with mass spectrometry EIMS [1], FAB [2], and NMR [3] technigue has been used to study biological convertion of low molecular weight substrates ([U-2H]MetOH and 2H2O) to the amino acids, proteins and nucleotides by various strains of microbial and algae origin (green microalgae; Chlorella sp. and Dunaliella salina Teod., blue green algae Spirulina sp., halophilic bacterium Halobacterium halobium [4], methylotrophic bacteria; Methylobacillus flagellatum and Brevibacterium methylicum [5],  bacills; Bacillus subtilis and Bacillus amiloliqufanciens [6] (Mosin O. V., Karnaukhova E. N., et all., 1993;  Mosin O. V., Skladnev D. A., et all., 1996a). The influence of 2H2O and other [U -2H]labeled substrates (e.g. [U-2H]MeOH) on several growth characteristics of the microorganisms (time of generation, lag-phase, yield of biomass) and biosynthetic activity was also investigated in those studies. 

  •                  

  • LITERATURE

    Campbell I. D., and Dwek. Biological Spectroscopy. Benjamin/Cummings, Menlo Park, Calif. 1990.

    Covington A. K., Robinson R. A., and Bates R. G. // J. Phys. Chem. 1966. V. 70. P. 3820.

    Еgorova T. A., Mosin O. V., Shvets V. I., et al. // Biotechnologija. 1993. ¹.8. P. 21-25.

    Fesic S. W. and  Zuiderweg E. R. // Quarterly Reviews of Biophysics. - 1990. - V.23. - N.2. - P. 97-131.

    Johnson W. C. Protein secondary structure and circular dichroism: A practical guide. Proteins Struct. Funct. Genet. 1990. 7:205-214.

  • CONCLUSION

    The successful adaptation of organisms to high concentration of 2H2O will open a new avenues of investigation with using [U2H]labeled macromolecules could be isolated from these organisms. For example, fully deuterated essential macromolecules as proteins and nucleic acids will give promise of important biological, medical and diagnostical uses. Modern physical methods of study the structure of [U2H]labeled macromolecules, particularly three-dimentional NMR in a combination with crystallography methods, X-ray diffraction, IR-, and CDspectroscopy should cast new light on many obscure problems concerning with the biological introduction of deuterium into molecules of DNA and proteins as well as the structure and the function of macromolecules in the presence of 2H2O. The variety of these and other aspects of biophysical properties of fully deuterated macromolecules in the presence of 2H2O remain an interesting task for the future.

  • ADAPTATION TO 2H2O

    4.1. The main hypothese. We proposed that a cell theoretically could in principle synthezise a big number of forms of [2H]labeled macromolecules with somewhat different structures and conformations, so that a cell could easily select a preferable one from al these species in a course of adaptation to 2H2O, that is the best suitable namely for that conditions. A simple imaginary principle I am going to discuss here perhaps somewhat may explain this probable mechanism. Let us suppose, for example that there are at least two imadinary structural systems - ordinary (normal) system call it a system 1 and unordinary (adaptive) system 2 (see a Figure above). Supporse, that the environment is a homoginious substanse and compose from ordinary substance A (H2O) (situation 1). The necessarely condition for the normal working of this model in natural H2O environment is that system 1 works and system 2 stay in background (situation 2). 

  • DISCUSSION

    3.1. The methods for analyzing the structure and the conformation of [U -2H]labeled macromolecules. The biological labelling with deuterium is an useful tool for investigating the structure and the conformational properties of macromolecules. The fundamental objectives have meant that living models have retained their importance for functional studies of such biological important macromolecules and can be used to obtain structural and dynamic information about the [U -2H]labeled macromolecules.

  • SCIENTIFIC ACTUALITY OF THE RESEARCH

    A special attention will be given to the investigation of biological adaptation to 2H2O allowing cells to synthesize a deuterated forms of macromolecules (particulary interest have DNA and short-chain individual proteins both with well known amino acid sequence and conformation) with a certain structure allowing their functioning in 2H2O environment.

    Firstly, in this connection it would be very interesting to know, how the structure of fully deuterated macromolecules could be changed neganively or positively in a course of biological adaptation to 2H2O requiring the presence of high concentrations of 2H2O in growth media.

  • My Research - Summary

    The role of deuterium in molecular evolution is most interesting question of nowdays science comprises two points mainly: the evolution of deuterium itself as well as the chemical processes going with participation of deuterium. It is believed the big bang produce the universe that was much denser and hotter than it is now and made almost entirely of  two main elements - hydrogen and helium. Deuterium itself was made only at a second stage of the beginning of the universe, namely through the collision of one neutron with one proton at a temperature of about one billion degrees; furthemore the two formed deuterons in turn stuck together into helium nuclei, which contain two protons and two neutrons. It is considered, that during the formation of helium nuclei, almost all the deuterons combined to form helium nuclei, leaving a tiny remant to be detected today so that only one in 10.000 deuterons remained unpaired. Thus, deuterium serves as a particularly important marker. The quantity of deuterium in contemporary nature is approximately small and measured as no more than 0.015% (from the whole number of hydrogen atoms) and depends strongly on both the uniformity of substance and the total amount of matter formed in course of early evolution.

  • Curriculum vitae

    Part-time lecturer at Moscow State University of Food Production, 125080, Moscow, Volokolamskoet Shosse, 11, telepnone 158-03-71.

    Scientific interests:

    Application of various microbial objects for the preparation of cell compounds including proteins, amino acids, carbohydrates and nucleosides labeled with stable isotopes 2H, 13C, 15N;

    Metabolism of stable isotopes;

    Biological adaptation to heavy water and effects of heavy water on living objects;

    Adaptation to heavy water;

    Molecular evolution.

    Каталог: 10
  • Mosin O. V., Biography

    Russian scientist, biochemist, researcher of water, engineer of technology (1992), candidate of Science (Ph. D in Chemistry) Dr. Oleg V. Mosin was bourn in a military family and had spent much time in Ural region. In 1992 he graduated from Moscow State Academy named after M.V. Lomonosov and taken post-graduate studies from the same Academy on the theme of biotechnological methods of production of stable isotope labeled compounds and further worked under the leadership of prominent Soviet and Russian scientist the founder of Soviet and Russian school of biotechnology Doctor of Sciences, academician, professor Vitaly I. Shvetz where he studied many living objects to resistance to highly deuterium content in growth media. By employing special adaptation technique many living cells were adapted to high deuterium content in growth media to prepare deuterated macromolecules. A special attention was given to the investigation of biological adaptation to 2H2O allowing cells to synthesize deuterated forms of macromolecules (DNA and short-chain individual proteins both with well known amino acid sequence and conformation) with a certain structure allowing their functioning in heavy water environment. For this purpose the special biotechnological approaches based on using the strains with improved properties when growing on heavy water for obtaining fully deuterated DNA and individual proteins were developed by him for allowing to prepare deuterated macromolecules in gram scale quantities. 

    Каталог: 4
  • Kirlian Effect in the Study of the Properties of Water

    Oleg Mosin, Doctor in Chemistry

    The Kirlian effect in which a Kirlian aura is observed is called the plasma emission of light of the electric discharge. Kirlian effect is color coronal discharge in gas. The discharge is on the surface of the objects located in an alternating electric field with high frequency from 10 to 100 kilohertz. There occurs a surface interaction of 5 to 30 kW between the electrode and the object under research.

    The Kirlian effect is observed like lightning


  • The production of 2H-labeled amino acids by a new mutant

    Summary

    The biosynthesis of 2H-labeled phenylalanine was done by converse of low molecular weight substrates ([U2H]methanol and 2H2O) in a new RuMP facultative methylotrophic mutant Brevibacterium methylicum. To make the process work, adapted cells with improved growth characteristics were used on minimal medium M9 with the maximum content of 2H-labeled substrates. Alanine, valine, and leucine/isoleucine were produced and accumulated exogeneously in addition to the main product of biosynthesis. Electron impact mass spectrometry of methyl esters of the N-Dns-amino acid mixture obtained after the chemical derivatization of growth medium with dansyl chloride and diazomethane, was done to calculate the deuterium enrichment of the amino acids synthesized. The experimental data testified to the character of labeling of amino acid molecules as heterogeneous; however, high levels of deuterium enrichment were detected in all presented molecules - for phenylalanine the enrichment was six, leucine/isoleucine - 5.1, valine - 4.7, and alanine - 3.1 deuterium atoms.

  • Methylotrophic biomass as 2H-labeled substrate for biosynthesis of inosine

    It was proposed to use the 2H-labeled hydrolysate of RuMP facultative methylotroph Brevibacterium methylicum, obtained from deuterated salt medium dM9 as a substrate for the growth of inosine producing bacterium Bacillus subtilis. The growth of the bacterim was performed via glucose convertion on specially developed medium dHM with 78.5% (m/m) 2H2O and supplimented with 2.5% (m/m) of 2H-labeled methylotrophic hydrolysate. To evaluate the level of deuterium enrichment FAB MS technique was used after the isolation of 2H-labeled inosine. 2H-labeled inosine obtained from dHM medium represented a mixture of molecular species containing various number of included deuterium atoms with different contribution to the enrichment. The level of enrichmet calculated by the presence of most abandant peak of the molecular ion in cluster ((M+H)+ at m/z 274) was estimated as five deuterium atoms, from which three are attributed to ribose and two to hypoxantine. 

  • Heavy water and adaptation

    The physiological adaptation process of various bacterial producents of amino acids, proteins and nucleosides belonging to various taxsonomic groups of microorganisms (facultative and obligate methylotrophic bacteria - Brevibacterium methylicum and Methylobacills flagellatum, halophilic bacterium - Halobacterium halobium and bacills - Bacillus subtilis) to growth and biosynthesis of necessary compounds on media containing the maximum concentration of heavy water is investigated. In article is informed on a method, which consists in multistep adaptation of bacteria to deuterium with the folowing selection of individual colonies grown on heavy water. In the result of application of the given approach among the studied bacteria were selected the individual strains keeping high growth and biosynthetic abilities while growing on heavy water.

  • Biological effects of heavy water in cells

    Oleg V. Mosin

    Department of Biotechnology, M. V. Lomonosov State Academy of Fine Chemical Technology, Vernadskogo Prospekt 86, 117571, Moscow, Russia

    ABSTRACT
    The biological effects of heavy water prove to be very interesting question of nowdays biochemical science which comprising two main points: the evolution of deuterium itself as well as the chemical processes going on with participation of deuterium oxyde.

  • Everything about water

    In my opinion, (says O. V. Mosin Ph. D), this is the best scientific site about water on the Internet, and it has collected virtually all the information about water and its properties (he has even counted 66 anomalies of water). Moreover Chaplin has suggested a water model different from Zenin’s model, based not on a dodecahedron, but on a icosahedron. There the methods for the construction of water clusters are described in detail.

    Nowadays Martin Chaplin is a very popular scientist worldwide who studies the structure of water. His water model differs from Zenin’s model and is based not on a dodecahedron, but on a icosahedron. There the methods for the construction of water clusters are described in detail. Currently this is the most complete scientific site about water and its structure, and M. Chaplin himself is a scientist and researcher of water, widely known throughout the world.

  • Revealing the hydrate formation process at the water-CO2 interface

    Water can form solid clathrate phases in the presence of small molecules. These so called hydrates are crystalline inclusion compounds where guest molecules, mainly gases, are trapped in an ice-like network of nanometre-sized cages. Methane hydrate is of special importance as it occurs in huge amounts in the sediments of deep sea regions. In recent years hydrates have attracted general interest because of a rising number of possible applications, e.g. mining of methane from the ocean floor or the storage of CO2 or H2. Thus, for such applications, knowledge of the fundamental processes involved is essential in order to control -inhibit or initiatehydrate formation. In general, two kinds of model exist describing the formation of hydrates at the molecular level. While cluster models such as the cluster nucleation theory [1] predict hydrate precursors forming around dissolved guest molecules, in stochastic models, like the local structuring hypothesis [2], the hydrate formation happens without such precursors. The difference between the two models is illustrated schematically in Figure 40.

  • UNDERSTANDING GRANDER "PENERGIZER" WATER

    Johann Grander is an Austrian who did not claim to be a scientist, yet claims to have developed a technique for imprinting "natural" and "vital" electromagnetic energies into water.

    Grander claims to be able to restore water to its natural state, removing the influence of chemical contamination, electrical disturbances and even the "destructive effect of earth-orbiting satellites"---all with a small pen-like device used to simply stir water in a water glass.

    According to Grander, the "effective operating principle" of the Grander Water system is the

    "implosion of electromagnetic and subtle energy fields".

  • GRANDER WATER: ESOTERIC HUMBUG

    Scientist won trial at the "Oberlandesgericht Wien" (High Court Vienna,Austria)

    Vienna (APA-OTS, 2006-09-06) - In a case that made national news, the High Court in Vienna, Austria, ruled in favour of Viennese biologist Dr. Erich Eder, after three years of trial. The Tyrolean company U.V.O., distributor of the GRANDER® products that supposedly "vitalize" water, had taken legal action against Dr. Eder as he had criticized their products as being "esoteric humbug".

  • Grander water weirdness

    Most of the water-cluster hucksters peddle "concentrates" that you add to your drinking water in order to "cluster" or "uncluster" it (depending on which fable you prefer tobelieve.) Johann Grander is an Austrian inventor who claims to have found a way to "revitalize" water, changing its "inner structure" and returning "the watermolecules to a highly ordered state, making the water more stable."