• Специальная теория относительности

    К концу 19 века стало известно, что скорость передачи информации при помощи света (но не самого света) не зависит от скорости источника и есть величина постоянная. Свет, безусловно, явление непростое. Это не пущенная в пространство рукой дикаря горсть песка, все песчинки которой имеют одинаковую скорость. Если свойство приёмника света таково, что он реагирует на компоненту света, скорость которой равна 300000 километров в секунду, становясь, в свою очередь, источником вторичного излучения также в неограниченном скоростном спектре , это не основание для второго постулата Эйнштейна. Убедительный пример этому - двойной доплер-эффект.

    Суть его в следующем: Источник света, он же приёмник, посылает луч в определённую точку и регистрирует отражённый от этой точки сигнал. Согласно СТО, сигнал должен уйти от источника со скоростью «С» и вернуться с этой же скоростью через строго определённое время.

  • Размеры черных дыр. Гигантские черные дыры

    До сих пор мы говорили о возникновении во Вселенной черных дыр звездного происхождения. Астрономы имеют все основания предполагать, что, помимо звездных черных дыр, есть еще другие дыры, имеющие совсем иную историю.

    Как читатель уже знает, в начале 60-х годов нашего века были открыты необыкновенные небесные тела — квазары. Эти объекты находятся далеко за пределами нашей Галактики. Они необычайно мощно излучают энергию, их светимость иногда в сотни раз превышает светимость больших галактик. Уже само по себе это крайне интересно. Но астрономы были, буквально поражены, когда им удалось установить, что основная энергия в квазаре излучается из области размером меньше одного светового года! 

  •                  

  • Пустота

    Бум, связанный с черными дырами, начался в астрономии в конце 50-х — начале 60-х годов. Проходили годы, многое прояснялось в этой загадке. Стала ясна неизбежность рождения черных дыр после смерти массивных звезд; открыли квазары, в центре которых, вероятно, находятся сверхмассивные черные дыры. Наконец, в рентгеновском источнике в созвездии Лебедя обнаружили первую черную дыру звездного происхождения. Физики-теоретики разобрались с диковинными свойствами самих черных дыр, постепенно привыкли к этим гравитационным пропастям, могущим только заглатывать вещество, увеличиваясь в размере, и, казалось бы, обреченным на вечное существование.

    Ничто не предвещало нового грандиозного открытия. Но такое открытие, изумившее видавших виды знатоков, грянуло как гром среди ясного неба. 

  • Пространство и время

    Догадки о том, что представления об абсолютном времени отнюдь не столь очевидны, иногда высказывались и в давние времена. Так, Лукреции Кар в I веке до нашей эры писал в поэме “О природе вещей”: “Время существует не само по себе... Нельзя понимать время само по себе, независимо от состояния покоя и движения тел”

    Но только А. Эйнштейн доказал, что никакого абсолютного времени нет. Течение времени зависит от движения и, что сейчас для нас особенно важно, от поля тяготения. В сильном поле тяготения все процессы, абсолютно все, будучи самой разной природы, замедляются для стороннего наблюдателя Это и значит, что время — то есть то общее, что присуще всем процессам, — замедляется.

  • Простота и сложность черных дыр

    Итак, мы познакомились с физикой черных дыр, с тем, что происходит в их окрестностях и что может происходить внутри самих дыр. Читатель, наверное, согласится с тем, что черные дыры — совершенно исключительные объекты, не похожие ни на что, известное до сих пор. Это не тела в обычном смысле слова и не излучение. Это дыры в пространстве и времени, возникающие из-за очень сильного искривления пространства и изменения характера течения времени в стремительно нарастающем гравитационном поле. 

  • Поле тяготения черной дыры

    Согласно ньютоновской теории тяготения любое тело в гравитационном поле звезды движется либо по разомкнутым кривым — гиперболе или параболе, — либо по замкнутой кривой — эллипсу (в зависимости от того, велика или мала начальная скорость движения). У черней дыры на больших от нее расстояниях поле тяготения слабо, и здесь все явления с большой точностью описываются теорией Ньютона, то есть законы ньютоновской небесной механики здесь справедливы. Однако с приближением к черной дыре они нарушаются все больше и больше.

    Познакомимся с некоторыми важнейшими особенностями движения тел в поле тяготения черной дыры. 

  • Поиски чёрных дыр

    То, что знают астрономы об эволюции звезд, приводит к неизбежному выводу: черные дыры должны возникать в конце жизни массивных небесных тел. Как же протекает их эволюция и почему следует столь определенный вывод?

    Вещество обычной звезды, подобной нашему Солнцу, находится под действием двух противоположных сил — тяготения, стремящегося сжать звезду к центру, и давления раскаленных газов, стремящихся ее расширить. Их равенство обеспечивает устойчивое состояние звезды. Но горячая звезда непрерывно излучает энергию с поверхности, и если бы эта потеря не компенсировалась, то звезда потеряла бы свою тепловую энергию и стала бы сжиматься. Однако этого не происходит, ибо вблизи центра звезды, где температура достаточно велика, идут термоядерные реакции, сопровождающиеся выделением огромной энергии. При этом ядерное “горение” претерпевают сначала водород, гелий, а затем и более тяжелые элементы — углерод, кислород и т. д. Термоядерные реакции и являются источником энергии звезд, которую они излучают в пространство.

  • Открытие черных дыр

    В 1966 году был предложен еще один способ поиска черных дыр. Чтобы его разъяснить, ответим сначала на вопрос — почему светимость газа, падающего в черную дыру, относительно невелика?

    Дело в том, что в межзвездном пространстве мала плотность газа, и, следовательно, его мало падает на черную дыру. А могут ли осуществляться в Галактике условия, когда газа падает гораздо больше? 

  • Открытие Хоукинга

    Сенсационное открытие было сделано в 1974 году английским теоретиком С. Хоукингом. В учебнике по гравитации американских физиков Ч. Мизнера, К. Торна и Дж. Уилера, вышедшем еще до упомянутого открытия, о работах С. Хоукинга сказано, что в них “проявляется не только огромная интуиция, глубина и разносторонность, но также и дар необыкновенной решимости в преодолении тяжелейших физических трудностей, в стремлении найти и понять истину”. С. Хоукинг показал, что существует квантовый процесс рождения частиц самой черной дырой, ее гравитационным полем, приводящий к уменьшению массы и размера черной дыры. 

  • О теории относительности

    И сегодня работа в области теории относительности требует иногда долгих и кропотливых математических преобразований вручную (без электронной машины), являющихся часто нудными и однообразными из-за огромного количества членов в формулах. Но без чернового труда не обойтись. Я часто предлагаю студентам (а иногда аспирантам и научным работникам), покоренным фантастичностью общей теории относительности, познакомившимся с ней по учебникам и желающим в ней работать, конкретно вычислить своими руками хоть одну сравнительно простую величину в задачах этой теории. Не все после многодневных (а иногда и гораздо более долгих!) вычислений столь же горячо продолжают стремиться посвятить свою жизнь этой науке. 

  • Невращающиеся тела и черные дыры

    До сих пор мы говорили только о черных дырах, возникающих при сжатии сферических тел и обладающих поэтому сферически симметричным полем тяготения. А какая черная дыра возникает при сжатии не сферического, например сплюснутого, тела? Мы пока будем говорить только о невращающихся телах, оставив вопрос о вращении до следующего раздела.

    Итак, до сжатия тело имело не сферическое гравитационное поле. Означает ли это, что возникнет сплюснутая черная дыра со сплюснутым полем тяготения? Долгое время ответ на этот вопрос был неизвестен, и эту задачу решили лишь сравнительно недавно. На самом деле никаких сплюснутых или других несимметричных черных дыр существовать не может. Дело в том, что в ходе сжатия, когда размеры тела приближаются к гравитационному радиусу, происходит интенсивное излучение гравитационных волн. Оказывается, что при этом все отличия поля тяготения от строгой сферичности уменьшаются и “излучаются” в виде гравитационных волн. 

  • На границе черной дыры

    Одна из самых больших трудностей состояла в том, чтобы выяснить, что происходит внутри черной дыры в реальном случае, а не в какой-то идеализированной ситуации. Чем отличается случай реальный от идеализированного? К идеализации теоретики прибегают для того, чтобы упростить уравнения, которые они решают. Например, предполагали, что сжимается идеально сферическая без малейший отклонений от шаровой формы звезда. Для такой идеализированной задачи уравнения неизмеримо проще, чем в общем случае. Их удалось решить и исследовать “внутренность” возникающей сферической черной дыры. Но даже после получения решения потребовались десятилетия, чтобы физики окончательно осознали структуру этой “внутренности”.

  • Кто открыл черные дыры?

    Между французами и англичанами идет иногда полушутливая, а иногда серьезная полемика: кого следует считать первооткрывателем возможности существования невидимых звезд — француза П. Лапласа или англичанина Дж. Мичелла? В 1973 году известные английские физики-теоретики С. Хоукинг и Г. Эллис в книге, посвященной современным специальным математическим вопросам структуры пространства и времени, приводили работу фрнцуза П. Лапласа с доказательством возможности существования черных звезд; тогда о работе Дж. Мичелла еще не было известно. Осенью 1984 года известный английский астрофизик М Рисе, выступая на конференции в Тулузе, сказал, что хотя это не очень удобно говорить на территории Франции, но он должен подчеркнуть, что первым предсказал невидимые звезды англичанин Дж. Мичелл, и продемонстрировал снимок первой страницы соответствующей его работы. Это историческое замечание было встречено и аплодисментами и улыбками присутствующих.

  • Кинетический момент (момент количества движения)

    Представим себе изолированную систему из двух материальных тел А и В, движущихся навстречу друг другу параллельным курсом, но не по одной прямой. Они не вращаются, не взаимодействуют друг с другом, но система АВ будет иметь момент количества движения, даже когда эти тела удалятся в бесконечность. Это прописная истина. Но надо особо отметить, что этот кинетический момент, как и кинетическая энергия, не имеет отношения ни к телу А, ни к телу В, а принадлежит системе АВ.

    Ещё надо отметить, что центр масс этой системы - единственная точка, относительно которой должен вычисляться этот момент, чтобы на результате не сказывались фиктивные факторы.

  • Как искать чёрные дыры?

    До начала 60-х годов, по-видимому, никто из астрономов серьезно и не пытался искать ни нейтронные звезды, ни тем более черные дыры. Молчаливо предполагалось, что эти объекты слишком эксцентричны и скорее всего представляют собой лишь выдумку теоретиков. О них даже предпочитали не говорить. Иногда глухо упоминалось, что они, может быть, и могли образоваться, но, вероятнее всего, этого не происходит. И во всяком случае, если они есть, то их нельзя обнаружить. 

  • Исследования

    Наступила наша эпоха. Человечество в своих познаниях столкнулось с условиями, когда влиянием материи на свойства пространства и времени пренебрегать нельзя. Несмотря на инертность нашего мышления, мы должны привыкнуть к такой необычности. И теперь новое поколение людей уже гораздо легче воспринимает истины теории относительности (основы специальной теории относительности изучают сейчас в школе!), чем это было несколько десятилетий назад, когда теорию Эйнштейна с трудом воспринимали даже самые передовые умы

    Сделаем еще одно замечание о выводах теории относительности. Ее автор показал, что свойства пространства и времени не только могут меняться, но что пространство и время объединяются вместе в единое целое — четырехмерное “пространство время” Искривляется именно это единое многообразие. Конечно, наглядные представления в такой четырехмерной сверхгеометрии еще более трудны и мы здесь не будем на них останавливаться.

  • Дыра во времени

    Теория тяготения предсказывает, что время течет тем медленней, чем ближе часы находятся к гравитационному радиусу Это означает, что, какие бы процессы ни протекали в сильном поле тяготения, далекий от черной дыры наблюдатель увидит их в замедленном темпе.

    Так, для него колебания в атомах, излучающих свет в сильном поле тяготения, происходят замедленно, и фотоны от этих атомов приходят к нему “покрасневшими”, с уменьшенной частотой Это явление носит название гравитационного красного смещения (оно послужило основой для одной из проверок правильности теории Эйнштейна). Для нас сейчас важен тот факт, что замедление времени и покраснение света тем больше, чем ближе область излучения располагается к границе черной дыры "(к сфере Шварцшильда). Там время замедляет свой бег, и на самой границе черной дыры оно как бы замирает для далекого наблюдателя Этот наблюдатель, следя, например, за камнем, падающим к черной дыре, видит, как у самой сферы Шварцшильда он постепенно “тормозится” и приблизится к границе черной дыры лишь за бесконечно долгое время.

  • Гравитационный радиус

    Чем же отличается теория тяготения Эйнштейна от теории Ньютона? Начнем с простейшего случая. Предположим, что мы находимся на поверхности сферической невращающейся планеты и измеряем силу притяжения этой планетой какого-либо тела с помощью пружинных весов. Мы знаем, что согласно закону Ньютона эта сила пропорциональна произведению массы планеты на массу тела и обратно пропорциональна квадрату радиуса планеты. Радиус планеты: можно определить, например, измеряя длину ее экватора и деля на 2я.

    А что говорит о силе притяжения теория Эйнштейна? Согласно ей сила будет чуточку больше, чем вычисленная по формуле Ньютона. Мы потом уточним, что значит это “чуточку больше”. 

  • Гравитационный вихрь

    По теории Ньютона, гравитационное поле никак не зависит от движения вещества. Так, поля тяготения неподвижного шара и вращающегося совершенно одинаковы, если только одинаковы их массы. По теории Эйнштейна, это не так: поля тяготения рассматриваемых шаров будут несколько отличаться. В чем же оно заключается?

    Наиболее наглядно (но несколько упрощенно) можно себе представить это отличие, как если бы вокруг вращающегося тела возникало добавочное вихревое гравитационное поле, увлекающее за собой все тела в круговое движение. Дело происходит таким образом, как будто слои пространства медленно вращаются вокруг такого тела, причем угловая скорость их вращения зависит от расстояния: она мала вдали и нарастает с приближением к вращающемуся телу Для обычных небесных тел эти эффекты ничтожно малы. Проще всего их обнаружить, помещая вблизи вращающегося тела гироскоп. Если тело не вращается, то гироскоп будет указывать неизменное направление в пространстве по отношению к далеким звездам. (Широко известно использование гироскопов, например, для ориентации космических кораблей.) Однако вблизи вращающегося тела гироскоп медленно поворачивается. 

  • Гравитационные волны

    Известно, чтобы обнаружить электромагнитную волну, достаточно в принципе взять электрически заряженный шарик и наблюдать за ним; когда на него станет падать электромагнитная волна, шарик придет в колебательное движение. Но чтобы обнаружить гравитационную волну, одним шариком не обойтись. Потребуется минимум два, помещенных на некотором расстоянии друг от друга (заряжать их электричеством, конечно, не нужно). При падении на них гравитационной волны шарики будут то несколько сближаться, то удаляться. Измеряя изменение расстояния между ними, можно обнаружить волны тяготения. А почему нельзя обойтись одним шариком? — может спросить читатель.