• Гравитационный радиус

    Чем же отличается теория тяготения Эйнштейна от теории Ньютона? Начнем с простейшего случая. Предположим, что мы находимся на поверхности сферической невращающейся планеты и измеряем силу притяжения этой планетой какого-либо тела с помощью пружинных весов. Мы знаем, что согласно закону Ньютона эта сила пропорциональна произведению массы планеты на массу тела и обратно пропорциональна квадрату радиуса планеты. Радиус планеты: можно определить, например, измеряя длину ее экватора и деля на 2я.

    А что говорит о силе притяжения теория Эйнштейна? Согласно ей сила будет чуточку больше, чем вычисленная по формуле Ньютона. Мы потом уточним, что значит это “чуточку больше”. 

  • Гравитационный вихрь

    По теории Ньютона, гравитационное поле никак не зависит от движения вещества. Так, поля тяготения неподвижного шара и вращающегося совершенно одинаковы, если только одинаковы их массы. По теории Эйнштейна, это не так: поля тяготения рассматриваемых шаров будут несколько отличаться. В чем же оно заключается?

    Наиболее наглядно (но несколько упрощенно) можно себе представить это отличие, как если бы вокруг вращающегося тела возникало добавочное вихревое гравитационное поле, увлекающее за собой все тела в круговое движение. Дело происходит таким образом, как будто слои пространства медленно вращаются вокруг такого тела, причем угловая скорость их вращения зависит от расстояния: она мала вдали и нарастает с приближением к вращающемуся телу Для обычных небесных тел эти эффекты ничтожно малы. Проще всего их обнаружить, помещая вблизи вращающегося тела гироскоп. Если тело не вращается, то гироскоп будет указывать неизменное направление в пространстве по отношению к далеким звездам. (Широко известно использование гироскопов, например, для ориентации космических кораблей.) Однако вблизи вращающегося тела гироскоп медленно поворачивается. 

  •                  

  • Гравитационные волны

    Известно, чтобы обнаружить электромагнитную волну, достаточно в принципе взять электрически заряженный шарик и наблюдать за ним; когда на него станет падать электромагнитная волна, шарик придет в колебательное движение. Но чтобы обнаружить гравитационную волну, одним шариком не обойтись. Потребуется минимум два, помещенных на некотором расстоянии друг от друга (заряжать их электричеством, конечно, не нужно). При падении на них гравитационной волны шарики будут то несколько сближаться, то удаляться. Измеряя изменение расстояния между ними, можно обнаружить волны тяготения. А почему нельзя обойтись одним шариком? — может спросить читатель. 

  • Гравитационная бомба

    До сих пор, рассматривая процессы вокруг черной дыры и способы извлечения из нее энергии, мы убедились, что эту энергию можно извлечь либо в форме излучения гравитационных волн, либо в виде кинетической энергии тел, выбрасываемых из эргосферы. Но оказывается, существуют еще более удивительные и неожиданные способы использования черных дыр как генераторов энергии.

    Представим себе, что вращающаяся черная дыра облучается электромагнитными волнами. Что при этом будет происходить? На первый взгляд ничего интересного. Часть волн будет гравитационно захватываться черной дырой и навсегда в ней исчезать. Остальные, проходящие вблизи черной дыры, искривят свои траектории и уйдут дальше. Изменение направления распространения волн называют рассеянием. Рассеянные электромагнитные волны, уйдя вдаль от черной дыры, будут иметь ту же частоту, какую они имели, когда приближались к ней.

  • Возникновение чёрной дыры

    Согласно теории Эйнштейна, как только радиус небесного тела становится равным его гравитационному радиусу, свет не сможет уйти с поверхности этого тела к далекому наблюдателю, то есть оно станет невидимым. Но читатель наверняка уже обратил внимание, что это чрезвычайно необычное свойство далеко не единственное из тех “чудес”, которые должны произойти с телом, размеры которого сравнялись с гравитационным радиусом. Согласно сказанному в предыдущем разделе сила тяготения на поверхности звезды с радиусом, равным гравитационному, должна стать бесконечно большой, так же как и бесконечно большим должно быть ускорение свободного падения. К чему это может привести? 

  • Внутри черной дыры

    До сих пор мы говорили о процессах вокруг черной дыры. Обратимся теперь к самому захватывающему и интригующему: попробуем подойти к границе черной дыры — к краю этой бездонной пропасти (ее нельзя ничем заполнить) и попытаемся заглянуть внутрь.

    Впрочем, мы знаем, что слово “заглянуть” здесь неуместно. Увидеть, что происходит внутри черной дыры невозможно, даже достигнув ее границы. Для этого необходимо последовать внутрь черной дыры. В принципе это возможно, например, при простом свободном падении (находясь в космическом аппарате) в поле тяготения черной дыры. За конечное собственное время такого падающего наблюдателя он достигнет горизонта и будет продолжать падать дальше.

  • Взрыв чёрной дыры

    Прочитав предыдущие абзацы, читатель может удивленно пожать плечами: “Столь мизерное явление? Почему же оно вызвало такую бурю удивления и восторгов среди физиков?”

    Прежде всего потому, что до открытия С. Хоукинга физики были уверены — статическое поле тяготения вне черной дыры никак не может рождать частицы. Переменное же поле за горизонтом внутри дыры “невидимо”, “неосязаемо” для внешнего наблюдателя, и о нем, казалось, можно забыть. Но квантовые процессы как раз в характерны тем, что частица может оказаться там, где, с точки зрения классической физики, ее никак быть не должно. Например, частица может “просочиться” сквозь энергетический барьер, когда у нее не хватает энергии на его преодоление. С. Хоукинг показал, что такое свойство квантовых частиц в случае черных дыр ведет к качественно новому эффекту — квантовому испарению черных дыр Предоставленные сами себе, без внешних воздействий, они медленно исчезают, превращаются в тепловое излучение, медленно затягиваются в пространстве и времени. Принципиальная важность открытия С Хоукинга состоит именно в том, что опровергнуто представление о вечности черных дыр.

    Комментарии: 1
  • Бездонные черные дыры

    Излучение гравитационных волн телом, кружащимся около черной дыры, является способом получения энергии. Но это не есть способ извлечения энергии из самой черной дыры, а только энергии, связанной с кружащимся телом. Ведь в конце концов само тело (и часть гравитационных волн) падает в черную дыру, не извлекая, а увеличивая ее массу, а значит, и энергию.

    Возникает вопрос: а нельзя ли придумать какой-нибудь процесс, уменьшающий массу черной дыры и тем самым черпающий ее энергию?

  • «Чёрные дыры» Эйнштейна

    Тяготение совершенно одинаково действует на «разные тела», сообщая им одинаковые ускорения. Этот факт был установлен Галилеем, но не мог доказать существования такого «необходимого» понятия, как гравитационная масса, причём совпадающая по величине с инертной до двенадцатого знака.

    В законе падения тел проявляется «массовая» сущность гравитации и факт однотипности строения материи. Здесь нет места для тяжёлой массы, тем более с таким странным свойством, как точное равенство своей же инертной массе. Природа не показывает фокусов.

    Если в природе существует изотропный поток скрытой (первичной) массы, иначе, эфир, то можно предположить, что эта субстанция и есть сама Природа. Всё остальное - результат структурирования этого вакуума (образование сгустков материи) и его модулирования (гравитация, электродинамические явления и т.д.). В работе Ньютона пространство и время были наделены свойствами абсолютности, равномерности, безотносительности к чему-либо внешнему.

  • Глобальное потепление, предсказанное Христом

    Наше представление об окружающем Нас Мире определяется сегодняшним уровнем знаний. Мы почти ни чего не знаем о прошлом и вообще не представляем будущее.

    Бытует версия, что планета Земля существует миллионы лет и она извечна.

    Это говорит не только о низком познании нами существующего Мира, но и то, что принятая и не подлежащая сомнению сегодняшняя доктрина фундаментальных наук слишком груба, наивна, несовершенна, монопольно идеализирована, кабала для проницательных умов, ад не только для общеобразовательной школы, но и для высшей школы. А навязывание этой углубленной доктрины – это издевательство над нами и нашими детьми.

    Поэтому, сегодняшнее мое повествование состоит не в безусловном доказательстве, а в создании интриги, позволяющей взглянуть на существующий Мир с другой точки мировоззрения.

  • Транспорт во Вселенной и во времени

    Мы все привыкли к тому, что прошлого не вернуть, хотя порой очень хочется. Писатели-фантасты уже более века живописуют разного рода казусы, возникающие благодаря возможности путешествовать во времени и влиять на ход истории. Причем тема эта оказалась настолько животрепещущей, что в конце прошлого века даже далекие от сказок физики всерьез занялись поиском таких решений уравнений, описывающих наш мир, которые позволяли бы создавать машины времени и в мгновение ока преодолевать любые пространства и времена. 

  • Квазары ярче тысячи галактик

    Астрономы издревле любят порядок — все у них подсчитано, классифицировано и идентифицировано. Однако ночное небо не перестает удивлять внимательных наблюдателей и постоянно подбрасывает новые и неведомые объекты в звездные каталоги. Квазары, открытые всего 40 лет назад, не на шутку озадачили ученых своей феноменальной яркостью свечения и компактностью размеров. И только недавно астрофизикам удалось понять, откуда эти «динозавры Вселенной» черпают энергию, необходимую для того, чтобы сиять на звездном небе с такой удивительной яркостью.

    На фото: звезда, попавшая в поле тяготения массивной черной дыры, сначала разрывается на части приливными силами, а затем, в виде ярко светящегося сильно ионизированного газа, поглощается черной дырой. После такого «знакомства» от звезды остается лишь вращающееся вокруг черной дыры небольшое разреженное облако.

  • Создана удачная модель развития Вселенной

    Группа астрофизиков из Чикагского университета под руководством проф. Андрея Кравцова (Andrey Kravtsov) создала новую компьютерную модель эволюции вселенной, согласующуюся с теорией Большого взрыва. Моделирование показывает, каким образом загадочная темная материя способствовала трансформации видимой материи из ее первоначально равномерного состояния в космическую сеть галактик и галактических скоплений. Компьютерная модель показала поразительное сходство с последними практическими наблюдениями.

    В основе расчетов лежит предположение, что вся видимая структура Вселенной сформировалась под влиянием темной материи. Вокруг центров темной материи, под воздействием сил гравитации образуются ореолы, называемые также галосами. 

  • Самолёт - экранолёт

    Самолет, даже будучи в отставке, может принести неожиданную пользу и дать огромную прибыль, стоит только преобразовать его в новый тип воздушного транспорта – в экранолет. А такому преобразованию поддаются многие самолеты. Даже такой самолет, как Ан-2, несмотря на то, что это биплан классической компоновочной схемы.


    Как известно, самолет Ан-2, поднявшись в небо в 1947 г., за свою полувековую жизнь стал многоцелевым. Его выпускали в 16 модификациях, в том числе и в варианте гидросамолета на поплавковом шасси. До 1960 г. в СССР было построено более 5000 самолетов Ан-2. После передачи производства этого самолета в Польшу по решению СЭВ с 1960 по 1996 гг. в ПНР произведено еще около 12000 самолетов Ан-2, из которых 10400 поставлено в СССР. А с 1957 по 1977 гг. в Китае выпустили более 950 самолетов этого типа.


  • Проблема гравилета окончательно решена

    Первый в мире искусственный спутник Земли (ИСЗ) был запущен в СССР с космодрома Байконур 4 октября 1957 г. в 22 ч 28 мин по московскому времени. Он имел форму шара диаметром 58 см, его масса составляла 83,6 кг. Вывод рукотворного небесного тела на эллиптическую орбиту был осуществлен двухступенчатой ракетой-носителем "Спутник". Параметры первоначальной траектории: наибольшая высота над Землей (апогей) — 947 км, наименьшая (перигей) — 228 км; период обращения вокруг Земли — 96,2 мин. Он летал ровно три месяца, а потом вошел в плотные слои атмосферы и сгорел. Число витков вокруг мамы, совершенных ее первенцем, — 1400, пройденное расстояние — около 60 млн. км. Это была революция в развитии техники — качественный скачок в освоении мирового пространства, позволивший узнать много сокровенных тайн природы.

  • Недра Арктики и глобальное потепление

    В кайназойскую эру, 55 миллионов лет назад в Арктике было тепло и влажно, примерно, как сейчас в субтропиках. Океан прогревался до 23 градусов, по поверхности спокойных и неглубоких вод плавали растения. В те далекие времена с планеты уже давно исчезли первые динозавры, появлялись современные млекопитающие, а огромные материковые платформы находились в активном движении. Потом началось великое планетарное похолодание.

    А 45 миллионов лет назад в Северном ледовитом океане начали образовываться льды. Так в общих чертах выглядит древняя история Арктики, о которой мы можем судить благодаря беспрецедентно глубокому бурению, произведенному в районе Северного полюса экспедицией Acex (Arctic Coring Expedition). Экспедиция раскрывает тайны климата и проливает свет на причинно-следственную связь в цепочке «парниковые газы - глобальное потепление».

  • Гигантский метеорит изменил климат Земли

    Кратер шириной 480 км обнаружен под ледниковым щитом Антарктиды.

    Предполагается, что его возраст составляет около 250 млн. лет. Время столкновения метеорита с Землей совпадает с периодом катастрофического исчезновения видов в Пермско-Триассовую эпоху. Кроме того, размер и местоположение кратера (Земля Уилкса) позволяют предположить, что именно столкновение с гигантским метеоритом раскололо древний суперконтинент Гондвану. Считается, что динозавры вымерли 65 млн. лет назад в результате катастрофических изменений условий на планете, вызванных столкновением Земли с метеоритом, сформировавшим Чиксулубский кратер в Мексике (Юкатан). Расчеты показывают, что этот метеорит имел диаметр порядка 9,6 км. Размеры же небесного тела, упавшего на Землю Уилкса, в пять раз больше — порядка 48 км. По мнению ученых, столкновение с таким гигантским небесным телом неизбежно должно было привести к глобальным изменениям климата, которые оказались непереносимыми для подавляющего большинства видов живых организмов.

  • В Антарктиде обнаружен гигантский кратер

    Кратер шириной 480 км обнаружен под ледниковым щитом Антарктики. Предполагается, что его возраст составляет около 250 млн. лет. Время столкновения метеорита с Землей совпадает с периодом катастрофического исчезновения видов в Пермско-Триассовую эпоху. Кроме того, размер и местоположение кратера (Земля Уилкса) позволяют предположить, что именно столкновение с гигантским метеоритом раскололо древний суперконтинент Гондвану.

    Считается, что динозавры вымерли 65 млн. лет назад в результате катастрофических изменений условий на планете, вызванных столкновением Земли с метеоритом, сформировавшим Чиксулубский кратер в Мексике (Юкатан). Расчеты показывают, что этот метеорит имел диаметр порядка 9,6 км. Размеры же небесного тела, упавшего на Землю Уилкса, в пять раз больше — порядка 48 км. По мнению ученых, столкновение с таким гигантским небесным телом неизбежно должно было привести к глобальным изменениям климата на планете, которые оказались непереносимыми для подавляющего большинства видов живых организмов.

    Комментарии: 1
  • Машины пространства и времени

    Александр ВОЛКОВ

    В современной физике постепенно утверждается мысль о том, что наша Вселенная — лишь одна из бесчисленного множества вселенных. Некоторые из них, по-видимому, в точности напоминают нашу; в других могут существовать совершенно иные законы природы и иное количество размерностей; там вообще можно встретить все, что обещает математика. Гипотеза параллельных вселенных весьма удобна, с точки зрения физиков. В принципе, она объясняет, почему мы живем в лучшем из миров. И даже позволяет обсудить вопрос, как добраться до других миров. 

  • Кривое пространство

    Мы сейчас увидим, что вопрос о средней плотности материи во Вселенной имеет решающее значение не только для проблемы будущего Вселенной, но и для проблемы ее протяженности. Возможно, эта фраза вызовет настороженность у читателя. Как может возникнуть у материалиста вопрос о протяженности Вселенной? Разве не ясно, что пространство Вселенной продолжается во все стороны вплоть до бесконечности?