• Невращающиеся тела и черные дыры

    До сих пор мы говорили только о черных дырах, возникающих при сжатии сферических тел и обладающих поэтому сферически симметричным полем тяготения. А какая черная дыра возникает при сжатии не сферического, например сплюснутого, тела? Мы пока будем говорить только о невращающихся телах, оставив вопрос о вращении до следующего раздела.

    Итак, до сжатия тело имело не сферическое гравитационное поле. Означает ли это, что возникнет сплюснутая черная дыра со сплюснутым полем тяготения? Долгое время ответ на этот вопрос был неизвестен, и эту задачу решили лишь сравнительно недавно. На самом деле никаких сплюснутых или других несимметричных черных дыр существовать не может. Дело в том, что в ходе сжатия, когда размеры тела приближаются к гравитационному радиусу, происходит интенсивное излучение гравитационных волн. Оказывается, что при этом все отличия поля тяготения от строгой сферичности уменьшаются и “излучаются” в виде гравитационных волн. 

  • На границе черной дыры

    Одна из самых больших трудностей состояла в том, чтобы выяснить, что происходит внутри черной дыры в реальном случае, а не в какой-то идеализированной ситуации. Чем отличается случай реальный от идеализированного? К идеализации теоретики прибегают для того, чтобы упростить уравнения, которые они решают. Например, предполагали, что сжимается идеально сферическая без малейший отклонений от шаровой формы звезда. Для такой идеализированной задачи уравнения неизмеримо проще, чем в общем случае. Их удалось решить и исследовать “внутренность” возникающей сферической черной дыры. Но даже после получения решения потребовались десятилетия, чтобы физики окончательно осознали структуру этой “внутренности”.

  •                  

  • Кто открыл черные дыры?

    Между французами и англичанами идет иногда полушутливая, а иногда серьезная полемика: кого следует считать первооткрывателем возможности существования невидимых звезд — француза П. Лапласа или англичанина Дж. Мичелла? В 1973 году известные английские физики-теоретики С. Хоукинг и Г. Эллис в книге, посвященной современным специальным математическим вопросам структуры пространства и времени, приводили работу фрнцуза П. Лапласа с доказательством возможности существования черных звезд; тогда о работе Дж. Мичелла еще не было известно. Осенью 1984 года известный английский астрофизик М Рисе, выступая на конференции в Тулузе, сказал, что хотя это не очень удобно говорить на территории Франции, но он должен подчеркнуть, что первым предсказал невидимые звезды англичанин Дж. Мичелл, и продемонстрировал снимок первой страницы соответствующей его работы. Это историческое замечание было встречено и аплодисментами и улыбками присутствующих.

  • Кинетический момент (момент количества движения)

    Представим себе изолированную систему из двух материальных тел А и В, движущихся навстречу друг другу параллельным курсом, но не по одной прямой. Они не вращаются, не взаимодействуют друг с другом, но система АВ будет иметь момент количества движения, даже когда эти тела удалятся в бесконечность. Это прописная истина. Но надо особо отметить, что этот кинетический момент, как и кинетическая энергия, не имеет отношения ни к телу А, ни к телу В, а принадлежит системе АВ.

    Ещё надо отметить, что центр масс этой системы - единственная точка, относительно которой должен вычисляться этот момент, чтобы на результате не сказывались фиктивные факторы.

  • Как искать чёрные дыры?

    До начала 60-х годов, по-видимому, никто из астрономов серьезно и не пытался искать ни нейтронные звезды, ни тем более черные дыры. Молчаливо предполагалось, что эти объекты слишком эксцентричны и скорее всего представляют собой лишь выдумку теоретиков. О них даже предпочитали не говорить. Иногда глухо упоминалось, что они, может быть, и могли образоваться, но, вероятнее всего, этого не происходит. И во всяком случае, если они есть, то их нельзя обнаружить. 

  • Исследования

    Наступила наша эпоха. Человечество в своих познаниях столкнулось с условиями, когда влиянием материи на свойства пространства и времени пренебрегать нельзя. Несмотря на инертность нашего мышления, мы должны привыкнуть к такой необычности. И теперь новое поколение людей уже гораздо легче воспринимает истины теории относительности (основы специальной теории относительности изучают сейчас в школе!), чем это было несколько десятилетий назад, когда теорию Эйнштейна с трудом воспринимали даже самые передовые умы

    Сделаем еще одно замечание о выводах теории относительности. Ее автор показал, что свойства пространства и времени не только могут меняться, но что пространство и время объединяются вместе в единое целое — четырехмерное “пространство время” Искривляется именно это единое многообразие. Конечно, наглядные представления в такой четырехмерной сверхгеометрии еще более трудны и мы здесь не будем на них останавливаться.

  • Дыра во времени

    Теория тяготения предсказывает, что время течет тем медленней, чем ближе часы находятся к гравитационному радиусу Это означает, что, какие бы процессы ни протекали в сильном поле тяготения, далекий от черной дыры наблюдатель увидит их в замедленном темпе.

    Так, для него колебания в атомах, излучающих свет в сильном поле тяготения, происходят замедленно, и фотоны от этих атомов приходят к нему “покрасневшими”, с уменьшенной частотой Это явление носит название гравитационного красного смещения (оно послужило основой для одной из проверок правильности теории Эйнштейна). Для нас сейчас важен тот факт, что замедление времени и покраснение света тем больше, чем ближе область излучения располагается к границе черной дыры "(к сфере Шварцшильда). Там время замедляет свой бег, и на самой границе черной дыры оно как бы замирает для далекого наблюдателя Этот наблюдатель, следя, например, за камнем, падающим к черной дыре, видит, как у самой сферы Шварцшильда он постепенно “тормозится” и приблизится к границе черной дыры лишь за бесконечно долгое время.

  • Гравитационный радиус

    Чем же отличается теория тяготения Эйнштейна от теории Ньютона? Начнем с простейшего случая. Предположим, что мы находимся на поверхности сферической невращающейся планеты и измеряем силу притяжения этой планетой какого-либо тела с помощью пружинных весов. Мы знаем, что согласно закону Ньютона эта сила пропорциональна произведению массы планеты на массу тела и обратно пропорциональна квадрату радиуса планеты. Радиус планеты: можно определить, например, измеряя длину ее экватора и деля на 2я.

    А что говорит о силе притяжения теория Эйнштейна? Согласно ей сила будет чуточку больше, чем вычисленная по формуле Ньютона. Мы потом уточним, что значит это “чуточку больше”. 

  • Гравитационный вихрь

    По теории Ньютона, гравитационное поле никак не зависит от движения вещества. Так, поля тяготения неподвижного шара и вращающегося совершенно одинаковы, если только одинаковы их массы. По теории Эйнштейна, это не так: поля тяготения рассматриваемых шаров будут несколько отличаться. В чем же оно заключается?

    Наиболее наглядно (но несколько упрощенно) можно себе представить это отличие, как если бы вокруг вращающегося тела возникало добавочное вихревое гравитационное поле, увлекающее за собой все тела в круговое движение. Дело происходит таким образом, как будто слои пространства медленно вращаются вокруг такого тела, причем угловая скорость их вращения зависит от расстояния: она мала вдали и нарастает с приближением к вращающемуся телу Для обычных небесных тел эти эффекты ничтожно малы. Проще всего их обнаружить, помещая вблизи вращающегося тела гироскоп. Если тело не вращается, то гироскоп будет указывать неизменное направление в пространстве по отношению к далеким звездам. (Широко известно использование гироскопов, например, для ориентации космических кораблей.) Однако вблизи вращающегося тела гироскоп медленно поворачивается. 

  • Гравитационные волны

    Известно, чтобы обнаружить электромагнитную волну, достаточно в принципе взять электрически заряженный шарик и наблюдать за ним; когда на него станет падать электромагнитная волна, шарик придет в колебательное движение. Но чтобы обнаружить гравитационную волну, одним шариком не обойтись. Потребуется минимум два, помещенных на некотором расстоянии друг от друга (заряжать их электричеством, конечно, не нужно). При падении на них гравитационной волны шарики будут то несколько сближаться, то удаляться. Измеряя изменение расстояния между ними, можно обнаружить волны тяготения. А почему нельзя обойтись одним шариком? — может спросить читатель. 

  • Гравитационная бомба

    До сих пор, рассматривая процессы вокруг черной дыры и способы извлечения из нее энергии, мы убедились, что эту энергию можно извлечь либо в форме излучения гравитационных волн, либо в виде кинетической энергии тел, выбрасываемых из эргосферы. Но оказывается, существуют еще более удивительные и неожиданные способы использования черных дыр как генераторов энергии.

    Представим себе, что вращающаяся черная дыра облучается электромагнитными волнами. Что при этом будет происходить? На первый взгляд ничего интересного. Часть волн будет гравитационно захватываться черной дырой и навсегда в ней исчезать. Остальные, проходящие вблизи черной дыры, искривят свои траектории и уйдут дальше. Изменение направления распространения волн называют рассеянием. Рассеянные электромагнитные волны, уйдя вдаль от черной дыры, будут иметь ту же частоту, какую они имели, когда приближались к ней.

  • Возникновение чёрной дыры

    Согласно теории Эйнштейна, как только радиус небесного тела становится равным его гравитационному радиусу, свет не сможет уйти с поверхности этого тела к далекому наблюдателю, то есть оно станет невидимым. Но читатель наверняка уже обратил внимание, что это чрезвычайно необычное свойство далеко не единственное из тех “чудес”, которые должны произойти с телом, размеры которого сравнялись с гравитационным радиусом. Согласно сказанному в предыдущем разделе сила тяготения на поверхности звезды с радиусом, равным гравитационному, должна стать бесконечно большой, так же как и бесконечно большим должно быть ускорение свободного падения. К чему это может привести? 

  • Внутри черной дыры

    До сих пор мы говорили о процессах вокруг черной дыры. Обратимся теперь к самому захватывающему и интригующему: попробуем подойти к границе черной дыры — к краю этой бездонной пропасти (ее нельзя ничем заполнить) и попытаемся заглянуть внутрь.

    Впрочем, мы знаем, что слово “заглянуть” здесь неуместно. Увидеть, что происходит внутри черной дыры невозможно, даже достигнув ее границы. Для этого необходимо последовать внутрь черной дыры. В принципе это возможно, например, при простом свободном падении (находясь в космическом аппарате) в поле тяготения черной дыры. За конечное собственное время такого падающего наблюдателя он достигнет горизонта и будет продолжать падать дальше.

  • Взрыв чёрной дыры

    Прочитав предыдущие абзацы, читатель может удивленно пожать плечами: “Столь мизерное явление? Почему же оно вызвало такую бурю удивления и восторгов среди физиков?”

    Прежде всего потому, что до открытия С. Хоукинга физики были уверены — статическое поле тяготения вне черной дыры никак не может рождать частицы. Переменное же поле за горизонтом внутри дыры “невидимо”, “неосязаемо” для внешнего наблюдателя, и о нем, казалось, можно забыть. Но квантовые процессы как раз в характерны тем, что частица может оказаться там, где, с точки зрения классической физики, ее никак быть не должно. Например, частица может “просочиться” сквозь энергетический барьер, когда у нее не хватает энергии на его преодоление. С. Хоукинг показал, что такое свойство квантовых частиц в случае черных дыр ведет к качественно новому эффекту — квантовому испарению черных дыр Предоставленные сами себе, без внешних воздействий, они медленно исчезают, превращаются в тепловое излучение, медленно затягиваются в пространстве и времени. Принципиальная важность открытия С Хоукинга состоит именно в том, что опровергнуто представление о вечности черных дыр.

    Комментарии: 2
  • Бездонные черные дыры

    Излучение гравитационных волн телом, кружащимся около черной дыры, является способом получения энергии. Но это не есть способ извлечения энергии из самой черной дыры, а только энергии, связанной с кружащимся телом. Ведь в конце концов само тело (и часть гравитационных волн) падает в черную дыру, не извлекая, а увеличивая ее массу, а значит, и энергию.

    Возникает вопрос: а нельзя ли придумать какой-нибудь процесс, уменьшающий массу черной дыры и тем самым черпающий ее энергию?

  • «Чёрные дыры» Эйнштейна

    Тяготение совершенно одинаково действует на «разные тела», сообщая им одинаковые ускорения. Этот факт был установлен Галилеем, но не мог доказать существования такого «необходимого» понятия, как гравитационная масса, причём совпадающая по величине с инертной до двенадцатого знака.

    В законе падения тел проявляется «массовая» сущность гравитации и факт однотипности строения материи. Здесь нет места для тяжёлой массы, тем более с таким странным свойством, как точное равенство своей же инертной массе. Природа не показывает фокусов.

    Если в природе существует изотропный поток скрытой (первичной) массы, иначе, эфир, то можно предположить, что эта субстанция и есть сама Природа. Всё остальное - результат структурирования этого вакуума (образование сгустков материи) и его модулирования (гравитация, электродинамические явления и т.д.). В работе Ньютона пространство и время были наделены свойствами абсолютности, равномерности, безотносительности к чему-либо внешнему.

  • Глобальное потепление, предсказанное Христом

    Наше представление об окружающем Нас Мире определяется сегодняшним уровнем знаний. Мы почти ни чего не знаем о прошлом и вообще не представляем будущее.

    Бытует версия, что планета Земля существует миллионы лет и она извечна.

    Это говорит не только о низком познании нами существующего Мира, но и то, что принятая и не подлежащая сомнению сегодняшняя доктрина фундаментальных наук слишком груба, наивна, несовершенна, монопольно идеализирована, кабала для проницательных умов, ад не только для общеобразовательной школы, но и для высшей школы. А навязывание этой углубленной доктрины – это издевательство над нами и нашими детьми.

    Поэтому, сегодняшнее мое повествование состоит не в безусловном доказательстве, а в создании интриги, позволяющей взглянуть на существующий Мир с другой точки мировоззрения.

  • Транспорт во Вселенной и во времени

    Мы все привыкли к тому, что прошлого не вернуть, хотя порой очень хочется. Писатели-фантасты уже более века живописуют разного рода казусы, возникающие благодаря возможности путешествовать во времени и влиять на ход истории. Причем тема эта оказалась настолько животрепещущей, что в конце прошлого века даже далекие от сказок физики всерьез занялись поиском таких решений уравнений, описывающих наш мир, которые позволяли бы создавать машины времени и в мгновение ока преодолевать любые пространства и времена. 

  • Квазары ярче тысячи галактик

    Астрономы издревле любят порядок — все у них подсчитано, классифицировано и идентифицировано. Однако ночное небо не перестает удивлять внимательных наблюдателей и постоянно подбрасывает новые и неведомые объекты в звездные каталоги. Квазары, открытые всего 40 лет назад, не на шутку озадачили ученых своей феноменальной яркостью свечения и компактностью размеров. И только недавно астрофизикам удалось понять, откуда эти «динозавры Вселенной» черпают энергию, необходимую для того, чтобы сиять на звездном небе с такой удивительной яркостью.

    На фото: звезда, попавшая в поле тяготения массивной черной дыры, сначала разрывается на части приливными силами, а затем, в виде ярко светящегося сильно ионизированного газа, поглощается черной дырой. После такого «знакомства» от звезды остается лишь вращающееся вокруг черной дыры небольшое разреженное облако.

  • Создана удачная модель развития Вселенной

    Группа астрофизиков из Чикагского университета под руководством проф. Андрея Кравцова (Andrey Kravtsov) создала новую компьютерную модель эволюции вселенной, согласующуюся с теорией Большого взрыва. Моделирование показывает, каким образом загадочная темная материя способствовала трансформации видимой материи из ее первоначально равномерного состояния в космическую сеть галактик и галактических скоплений. Компьютерная модель показала поразительное сходство с последними практическими наблюдениями.

    В основе расчетов лежит предположение, что вся видимая структура Вселенной сформировалась под влиянием темной материи. Вокруг центров темной материи, под воздействием сил гравитации образуются ореолы, называемые также галосами.