Метод электрохимической коагуляции

Содержание: интересно, что думает по поводу электрохимической коагуляции местная многоуважаемая публика?


Отвечает к.х.н. О.В. Мосин

Электрохимические методы очистки воды относятся к физико-химическим процессам очистки водных систем. Они отличаются многостадийностью и относительной сложностью происходящих в аппаратах водоочистки физико-химических явлений. Механизм и скорость протекания отдельных стадий зависят от многих факторов, выявление влияния и правильный учет которых необходимы для оптимального конструирования электролизеров и рационального ведения процессов очистки воды.

Основываясь на законах физической химии, электрохимии и химической технологии, электрохимические методы очистки промышленных сточных вод можно разделить на три основные группы: методы превращения, методы разделения и комбинированные методы.

Методы превращения обеспечивают изменение физико-химических и  фазово-дисперсных  характеристик загрязнений сточных вод с целью их обезвреживания и быстрого извлечения из стоков. Превращение примесей может проходить ряд последовательных стадий, начиная с электронного уровня взаимодействия растворимых соединений и заканчивая изменением каких-либо электроповерхностных и объемных характеристик грубодисперсных веществ, содержащихся в сточных водах.

 Методы разделения предназначены для концентрирования примесей в локальном объеме раствора без существенного  изменения фазово-дисперсных или физико-химических свойств извлекаемых из сточных вод веществ. Разделение примесей и воды происходит в основном за счет флотации электрогенерируемыми пузырьками газов или силового воздействия электрического поля, обеспечивающего транспорт заряженных частиц в воде.

            К комбинированным методам электрохимической очистки сточных вод относятся методы, которые предполагают совмещение одного или нескольких методов превращения и разделения загрязнений стоков в одном аппарате.

Очистка сточных вод методом электрокоагуляции основан на их электролизе с использованием стальных или алюминиевых анодов, подвергающихся электролитическому растворению. В результате осуществляется процесс коагуляции, аналогичный обработке сточной воды солями железа и алюминия. Однако, по сравнению с реагентным коагулированием при электрохимическом растворении металлов не происходит обогащения воды сульфатами и хлоридами, содержание которых в воде лимитируется как при сбросе очищенных сточных вод в водоемы, так и при повторном использовании в системах промышленного водоснабжения.

            При электрокоагуляции сточных вод протекают и другие электрохимические и физико-химические процессы:

  1. электрофорез

  2. катодное восстановление растворенных в стоках органических и неорганических веществ или их химическое восстановление, а также образование катодных осадков металлов

  3. флотация твердых эмульгированных частиц обрабатываемой сточной воды пузырьками газообразного водорода, выделяющегося на катоде

  4. сорбция ионов и молекул растворенных примесей стоков, а также частиц эмульгированных в воде примесей на поверхности гидроксидов железа и алюминия, которые обладают значительной сорбционной способностью

При использовании нерастворимых электродов коагуляция может происходить в результате злектрофоретических явлений и разряда заряженных частиц на электродах, образования в растворе веществ (хлор, кислород), разрушающих сольватные соли на поверхности частиц. Такой процесс можно использовать для очистки вод при невысоком содержании коллоидных частиц и низкой устойчивости загрязнений.

Для очистки промышленных сточных вод, содержащих высокоустойчивые загрязнения, проводят электролиз с использова нием растворимых стальных или алюминиевых анодов. Под действием тока происходит растворение металла, в результате чего в воду переходят катионы железа или алюминия, которые, встречаясь с гидроксидными группами, образуют гидроксиды металлов в виде хлопьев. Наступает интенсивная коагуляция.

На процесс электрокоагуляции оказывает влияние материал электродов, расстояние между ними, скорость движения сточной воды между электродами, ее температура и состав, напряжение и плотность тока. С повышением концентрации взвешенных ве ществ более 100 мг/л эффективность электрокоагуляции снижается. С уменьшением расстояния между электродами расход энергии на анодное растворение металла уменьшается. Теоретический расход электроэнергии для растворения 1 г железа составляет 2,9 Вт-ч, а 1 г алюминия - 12 Вт-ч. Электрокоагуляцию рекомендуют проводить в нейтральной или слабощелочной среде при плотности тока не более 10 А/м2, расстоянии между электродами не более 20 мм и скорости движения воды не более 0,5 м/с.

Электрокоагуляционную очистку сточных вод можно использовать для очистки от эмульсий нефтепродуктов, масел, жиров (электрокоагулятор представляет собой ванну с электродами). Эффективность очистки от нефтепродуктов составляет: от масел 54-68%, от жиров 92-99% при удельном расходе электро энергии 0,2-3,0 Вт-ч/м3.

На практике наиболее широко используют безнапорные пластинчатые электрокоагуляторы, направление движения жид кости в которых может быть горизонтальным и вертикальным. Они могут быть однопоточными, многопоточными и смешанны ми. При многопоточной схеме движения вода проходит одно временно через промежутки между электродами (параллельное соединение каналов). При однопоточной схеме вода проходит между электродами последовательно (последовательное соеди нение каналов), что уменьшает пассивацию электродов. Скорость движения воды у однопоточных электрокоагуляторов много больше, чем у многопоточных. Толщину электродов, их ширину, межэлектродное расстояние определя ют с учетом конструктивных особенностей, а также заданной скорости дви жения воды, все параметры для расчета имеются в нормативной документации. Там же можно рассчитать объем газа.

Метод работы электрокоагулятора заключается в образовании под действием проходящего электрического тока высокоактивных гидроксидов алюминия и железа, немедленно вступающих в реакцию с вредными примесями техногенного происхождения и не затрагивающих при этом естественный солевой состав обрабатываемой воды с последующим быстрым переходом связанных примесей и непрореагировавших реагентов в нерастворимый, химически-инертный, легкоотделяемый шлам.

Наряду с этим, прохождение электрического тока большой плотности через обрабатываемую воду, обусловливает высокую бактерицидную эффективность процесса. Это происходит потому что из за разрыва связей высвобождаются химические элементы (их соединения) и ионы кислорода. Высвободившийся кислород в свою очередь (в дополнение к кислороду, образующемуся на аноде) не только насыщает воду ионами кислорода, но и является одной из мощных составляющих по обеззараживанию воды.

Практически полное обеззараживание происходит уже в первые несколько секунд работы прибора. Дополнительно эффект обеззараживания гарантируется интенсивным поступлением в среду атомарного кислорода, бурно выделяющегося в результате электролиза воды, на поддержание которого расходуется около 5% потребляемой прибором электроэнергии.

Достоинства .метода электрокоагуляции заключаются в компактность уста новок и простота управления, отсутствие потребности в реагентах, малая чувствительность к изменениям условий проведения процесса очистки (температура, рН среды, присутствие токсичных веществ), получение шлама с хорошими структурно-меха ническими свойствами.

Недостатком электрокоагуляции является повышенный расход металла и электроэнергии, малая производительность, образование большого объема вторичных отходов (шламов), а в некоторых случаях токсичных реагентов. Поэтому я не рекомендую использовать этот метод для бытовой очистки воды.

Кроме этого, под воздействием электрического поля в обрабатываемой воде, наряду с электрохимическими процессами, происходит разрушение (разрыв) КЛАСТЕРОВ воды, что крайне нежелательно, поскольку вода имеет свою неповторимую структуру, несущей информацию. Формирующиеся новые КЛАСТЕРЫ обладают абсолютно новыми непредсказуемыми характеристиками.

Электрокоагуляция тем не менее находит промышленное применение в пищевой, химической и целлюлозно-бумажной промышленности и при очистке сточных вод.

К.х.н. О. В. Мосин