Меченые атомы

Заголовок: Подскажите по меченым атомам.

Содержание: Можно ли засечь меченый атом с помощью переносного устройства (существует ли такое?) в пластиковой трубе на глубине до двух метров? Если можно, то какой?

Здравствуйте, Александр.

Техника меченых атомов приобрела широкую популярность в наше время. Теоретически эта методика очень проста. По существу, она сводится к введению особого изотопа в биологически важ ный метаболит (или продукт питания), после чего прослеживаются последовательные реакции этого метаболита в организме путем наблюдения за судьбой меченого изотопа в продуктах распада, крови, моче и т.д. На основании этих данных строится метаболизм. Использование меченых изотопов стало возможным благодаря широкому развитию методов получения изотопов.

Большинство химических элементов в природных условиях существует в различных изотопных модификациях. Все изотопы данного химического элемента имеют одинаковые химические свойства, но разные атомные веса. Атомный вес изотопа равен сумме чисел нейтронов и протонов, находящихся в ядре. Химические свойства элемента определяются только числом протонов, т. е. атомным номером. (благодаря различию в атомных весах два изотопа элемента могут характеризоваться несколько различными скоростями реакции.) Например, изотопы угле рода, такие, как С11, С12 и С13, имеют шесть протонов и соответственно 5, 6 и 7 нейтронов в ядре.

Некоторые природные изотопы радиоактивны; они испускают либо -частицы (ядра гелия Не4), либо отрицательные -лучи (быстрые электроны). Кроме того, многие радиоактивные изотопы испускают -излучение — фотоны высокой энергии.

Большинство искусственно полученных изотопов оказывается  -активными (встречается как электронная, так и позитронная -активность). В ряде случаев бывает легче обнаружить -излучение (фотоны), сопровождающее распад, нежели -лучи (электроны). Искусственно полученные изотопы служат основой для биологических исследований с использованием метода мече ных атомов.

Таблица. Некоторые изотопы, используемые в биологии и химии.

Изотоп

Природное содержание

Тип излучения

Период полураспада

1H

99,98

-

-

2H

1,56 . 10-2

-

-

3H

-

12,3 лет

13C

1,108

-

-

14C

-

5730 лет

15N

0,365

-

-

18O

0,204

-

-

32P

-

14,2 сут

35S

-

87 сут

36Cl

-

3 . 105 лет

42K

-

, 

12,4 года

60Co

-

, 

5,22 лет

55Fe

-

Рентгеновское излучение

4 года

59Fe

-

, 

45 сут

131J

-

, 

8 сут

Нерадиоактивные стабильные изотопы тоже могут быть использованы в методе меченых атомов, позволяя менять встречающиеся в природе изо топные соотношения. Содержание данного изотопа можно измерять с помощью масс-спектрометрической техники. Применяемые методы распространены на примере нерадиоактивного изотопа N15, кото рый обычно встречается в концентрациях много меньших, чем N14. Вводя соединения с высоким содержанием N15, можно приготовить образцы метаболитов с избытком данного изотопа.

Обычно радиоактивный элемент используют в виде примеси в растворе — носителе, например радиоактивный С14 используют растворенным в избытке нерадиоактивного С12. Такие соединения могут быть тогда применены в системах, которые находятся в полном термодинамическом равновесии относительно атомов углерода, но далеких от равновесия относительно меченого изотопа. Метод меченых атомов позволяет изучать равновесные биологические процессы без нарушения химического равновесия.

МЕЧЕНЫЕ АТОМЫ

В ходе эксперимента радиоактивные атомы распадаются. Распад данного атома представляет собой случайное событие; число распадов в секунду пропорционально числу радиоактив ных атомов, существующих в настоящий момент. В аналитической форме сказанное записывается в виде

dN/dt = -N; (1)

где N — число радиоактивных атомов, существующих в данное время, t — время, N, — постоянная, характерная для выбранного изотопа. Интегрируя уравнение (1), получаем

N = N0e-t (2)

где N0 — число .радиоактивных атомов в начальный момент. Из формулы (2) может быть определено время т, за которое число N уменьшается вдвое:

= ln2/ (3)

Время  называют периодом полураспада элемента. В течение каждого периода полураспада число атомов изотопа уменьшается в два раза.

Чтобы изотоп можно было использовать, применяя метод меченых атомов,  должно быть в разумных пределах. Если  слишком мало (порядка секунд), то изотоп распадется до того, как можно будет поставить большинство экспериментов. Но если  слишком велико, то число распадов за 1 сек получится недопустимо низким для обнаружения обычно употребляемых концентраций меченых атомов. Изотоп С14 с периодом полураспада 5700 лет находится близко от этого нижнего предела.

Активность образцов радиоактивного материала выражают числом распадов в секунду. Число распадов, происходящих в 1 г радия за 1 сек, равное 3,7-1010, называют кюри. Для биологических исследований с помощью меченых атомов наиболее удобно использовать одну тысячную этой единицы, т. е. милликюри. Число атомов на 1 мкюри связано с периодом полураспада. Если имеется 1 кюри данного радиоактивного изотопа, то

N = /ln2 x З,7-107 атомов.

Радиоактивные изотопы идентифицируют по их характеристическому излучению. В случае искусственных радиоактивных изотопов оно обычно складывается из -лучей и из -излучения. В случае орбитального электронного захвата (когда один из электронов поглощается ядром с уменьшением атомного номера на единицу) испу скаются лишь фотоны. Характеристикой излучения данного изотопа является максимальная энергия -лучей и энергия -излучения (фото нов). Удобными единицами измерения при этом являются электрон-вольты (эв), килоэлектрон-вольты (кэв) или мегаэлектрон-вольты (Мэв); 1 эв — это энергия, приобретаемая электроном в результате прохождения ускоряющей разности потенциалов в 1 в2).

Частицы, испускаемые в результате радиоактивного распада, обнаруживаются при помощи специального детектора излучения. Его показа ния могут быть затем подсчитаны с помощью любой электронной схемы. В прошлом наиболее широко распространенным типом детектора была трубка Гейгера — Мюллера, называемая счетчиком Гейгера. Он состоит из цилиндрической камеры, напол ненной газом, с натянутой по ее оси проволокой (рис.). Проволо ка изолирована от внешнего цилиндра и находится под высоким потенциалом. Ионизирующие частицы, попадая в счетчик, вызывают лавинную ионизацию в газе; если к счетчику приложена достаточно высокая разность потенциалов, возникающий импульс ионизационного тока будет зарегистрирован.

 

Рис. Счётчик Гейгера.

В конструкции счётчиков Гейгера применяются трубки различного диаметра – от нескольких миллиметров до 25 см. Длина трубки колеблется от 1 до 50 см. Газ, наполняющий счетчик, геометрия приборов и чистота материала стенок — все это влияет на работу счетчика. Импульсы счетчика Гейгера считают при помощи электронных схем. Обычно показания снимают с групп светодиодов, с электронного табло или с бумажной ленты. Другие электронные схемы позволяют осуществлять непосредствен ный счет импульсов.

Другим типом детектора радиоактивного излучения являет ся сцинтилляционный счетчик. Принцип работы этого счетчика основан на использовании мельчайших вспышек света, образующихся при попадании ионизирующего излучения во многие типы кристаллов и жидкостей. Спектральный состав излучения этих вспы шек характерен для данного сцинтиллятора. Интенсивность сцинтилляционных вспышек пропорциональна энергии, израсходован ной частицей. Сцинтилляцию в свою очередь обнаруживают с по мощью фотоумножителя, выходной сигнал которого поступает на ам плитудный анализатор. Таким образом, определенный изотоп может быть выделен из смеси или на фоне «шумов».

Сцинтилляционные счетчики могут быть изготовлены различных размеров и формы. Пропорциональность выходного сигнала энергии частицы в этом случае более строгая, чем для газового пропорционального счетчика. Применение жидкостных сцинтилляционных счетчиков позволяет растворять образцы, имеющие низкую интенсивность или же низкую энергию излучения, так как в этом случае для регистрации используется излучение, испускаемое во всех направлениях. Для обнаружения -излучения сцинтилляционные счетчики более эффективны, чем счетчики Гейгера. Однако в определенных случаях счетчики Гейгера имеют несколько лучшее отношение сигнала к шуму, чем большинство других сцинтилляционных счетчиков.

В некоторых случаях не так важно точно знать скорость распада, как выяснить, в какой части клетки локализован изотоп. Аналогичная задача возникает в бумажной хроматографии, когда различные соединения распределяются на поверхности куска фильтровальной бумаги. Далее желательно найти на бумаге распреде ление радиоактивных участков. Чтобы их обнаружить, можно поместить срез ткани (или фильтровальную бумагу) на куске фото бумаги. Она будет засвечена излучением, а затем при проявлении позволит определить локализацию радиоактивных изотопов. Такой снимок называют радиоавтографом.

Любой из этих методов регистрации может быть использован для любого изотопа. Хотя известно суще ствование радиоактивных изотопов для всех элементов, в биологи ческих исследованиях используют лишь ограниченное их число. К наиболее известным относятся С14, J131 и Р32.

ИЗОТОП УГЛЕРОДА С14

Встречающийся в природе углерод почти полностью состоит из стабильного изотопа С12. Кроме того, всегда имеется немного (около 1%) стабильного изотопа С13 и ничтожное количество радиоактивного изотопа С14. Искусственным путем можно получить изо топ С14, а также радиоактивные изотопы С10 и С11. Изотопы С10 и С11 имеют период полураспада соответственно 19 сек и 20,5 мин; при распаде оба изотопа испускают положительные -лучи и образуют изотопы бериллия (Be). Их периоды полураспада настолько коротки, что в биологических исследованиях с использованием меченых атомов применяют лишь радиоактивный изотоп углерода С14. Так как угле род является существенной частью всех биологических соединений, то изотоп С14 используется очень широко. Получить изотоп С14 можно с помощью ряда реакций. Если углерод, обогащенный изотопом С13, бомбардировать нейтронами, то некоторая его часть пре вращается в С14 за счёт реакции.

C13 + n 1 ------- C14 +

Если углерод, обогащенный С13, бомбардировать дейтронами, то образуется С14:

C13 + D ------- C14 + H1

Ни одну из этих реакций нельзя считать удобной, так как для концентрации С13, а затем и С14 должен быть использован масс-спектро метр.

Наиболее эффективная реакция получения изотопа С14 состоит в бомбардировке N14 нейтронами:

N14 + n1 ------- C14 + H1

Соединения нитрат аммония (NH4NO3) и нитрит бериллия (BeNO2) часто используют как источники азота. Затем изотоп С14 может быть выделен стандартными электрохими ческими методами. Некоторое количество его образуется таким спо собом в результате действия космических лучей на N14 в атмосфере, что дает около 10 отсчетов в 1 мин на 1 г углерода, находящийся в равновесии с атмосферным СО2.

Период полураспада С14 составляет около 5760 лет. Поэтоиу, для получения измеримого числа отсчетов необходима высокая концентрация этого изотопа. При распаде С14 испускает только электроны и превращается в N14; испускание -излучения отсутствует. Максимальная энергия электронов составляет примерно 0, 154 Мэв. Эта величина сравнима с энергией фотонов, излучаемых медицин ской рентгеновской трубкой, и меньше энергии частиц многих дру гих радиоактивных изотопов. Применяются различные способы регистрации этих электронов. Иногда образец, содержащий С14, заделывают в таблетку карбоната бария (ВаСО3) и помещают внутри счетчика Гейгера. Разработаны специальные счетчики Гейгера, предназначенные для наполнения их изотопом С14 в виде газа 14СО2. Используются также различные жидкие сцинтилляторы . Во всех случаях образец не должен быть очень толстым, так как все испускаемые им -лучи поглощаются при прохождении через несколько миллиметров твердого или жидкого вещества образца.

Ярким примером использования меченых атомов может служить определение геологического возраста с помощью углерода. В этом случае измеряется радиоактивность древесины или других органических материалов. Если эти материалы составляют часть системы недавно бывшей живой, то ее атомы углерода будут находиться в динамическом равновесии с СО2 атмосферы; в результате за счет изо топа С14 космического происхождения образец будет давать около 10 отсчетов в 1 мин на 1 г углерода. В таком же веществе, но уже в течение долгого времени не живом и, следовательно, не находящемся в равновесии с СО2 атмосферы, изотоп С14 посте пенно распадается и не восстанавливается. Таким образом, сле дует ожидать, что кусок кости мамонта, имеющей возраст около 5760 лет, содержит в два раза меньше С14 на 1 г углерода по сравнению с недавно возникшим живым материалом. А кусок древесины в возрасте 11 500 лет должен содержать в четыре раза меньше этого же количества (т. е. давать 2,5 отсчета в 1 мин на 1 г углерода). Благодаря изотопу С14 возникает слабая радиоактивность с невысокой интенсивностью. Тем не менее можно очень точно изме рить содержание С14, должным образом отделив отсчеты, возникаю щие за счет космических лучей, распада другого рода, радиоактивного фона комнаты и электронных шумов. Когда удается сравнить данные, полученные с помощью С14, сданными, полученными каким-либо другим способом, то обнаруживается, что они согласуются друг с другом в пределах экспериментальной ошибки. Для объектов, содержащих углерод и имеющих возраст от 2000 до 50 000 лет, дан ные, полученные с помощью изотопа С14, могут быть вычислены более точно, чем с помощью любых других методов. Возраст многих объектов, имеющих значение для археологии, антропологии и эво люции, можно определить только с помощью изотопа С14.

СТАБИЛЬНЫЕ ИЗОТОПЫ

В качестве меченых атомов, кроме радиоактивных, могут быть использованы и редкие стабильные изотопы. Для измерения относительной распро страненности стабильных изотопов используют масс-спектрометр (рис. ).

 

 

Рис. Схема масс-спектрометра.

1 – ионизационная камера; 2 – область ускорения; 3 – магнитный спектрометр скоростей; 4 – детектор; А – анод; С – катод с отверстием; Е – электрод, находящийся под высоким отрицательным потенциалом; H – магнитное поле; T – мишень.

При масс-спектрометрическом анализе исследуемый материал сначала должен быть превращен в летучий газ, который затем подается при низком давлении в зону, где его бом бардируют электронами; это происходит в ионизационной камере (область 1 на рис.). Бомбардировка электронами приводит к выбиванию валентных электронов из атомов, которые, таким обра зом, превращаются в положительные ионы. Эти положительные ионы, если давление газа достаточно низкое, ускоряются по направлению к катоду. Они проходят через отверстие в ка тоде и ускоряются высоким напряжением между катодом и электродом А (рис.). Все однозарядные ионы приобретают одинаковую кинетическую энергию Е:

E = ½ mv2

Скорость же ионов различна для каждого изотопа. Затем ионы разделяются в соответствии с величиной скорости путем отклонения в магнитном поле или с помощью других средств и окончательно масс-спектрометр может, быть использован для разделения изотопов или для определения концентрации изотопов. Масс-спектрометр больше и сложнее сцинтилляционного счетчика, но в принципе его исполь зование не вносит дополнительных проблем.

Сейчас метод включения атомов стабильных изотопов2 Н, 13С, 18О и 15N в молекулы - важное направление в биохимических и структурно-функциональных исследованиях разнообразных природных соединений и, в частности, аминокислот и белков. Молекулы этих изотопномеченых биологически активных соединений полученные данным методом с различными уровнями изотопного обогащения, от селективно до униформно меченых, являются удобными инструментами для разнопрофильных метаболических и биохимических исследований, медицинской диагностики различных заболеваний, химических синтезов разнообразных изотопномеченых соединений на их основе. Например, [2H]и [13C]фенилаланин и [2H]и [13C]тирозин использованы в синтезах меченых аналогов пептидных гормонов и нейропептидов.

Тенденции к предпочтительному применению стабильных изотопов по сравнению с их радиоактивными аналогами обусловлены отсутствием радиоактивности и возможностью определения локализации метки в молекуле методами высокого разрешения: спектроскопией ЯМР, ИКи лазерной спектроскопией, масс-спектрометрией.

Развитие методов детекции стабильных изотопов за последние годы позволило повысить эффективность проведения многочисленных биологических исследований de novo, а также изучать структуру и механизм действия многих клеточных БАС на молекулярном уровне, манипулируя атомами и конфигурациями молекул, что коррелирует со всеми современными нанотехнологическими стандартами.

С уважением,

К.х.н. О.В. Мосин