Парадоксы Зенона и понятие бесконечности

Именно в связи с открытием несоизмеримых величин в греческую математику проникло понятие бесконечности. В своих поисках общей единицы измерения для всех величин греческие геометры могли бы рассмотреть бесконечно делимые величины, но идея бесконечности приводила их в глубокое смятение. Если даже рассуждения о бесконечном проходили успешно, греки в своих математических теориях всегда пытались его обойти и исключить. Их затруднения перед явным выражением абстрактных понятий бесконечного и непрерывного, противоположных понятиям конечного и дискретного, ярко проявились в парадоксах Зенона Элейского.

Доводами Зенона были «апории» (тупики); они должны были продемонстрировать, что оба предположения заводят в тупик. Эти парадоксы известны под названием А х и л л е с, С т р е л а, Д и х о т о м и я (деление на два) и С т а д и о н. Они сформулированы так, чтобы подчеркнуть противоречия в понятиях движения и времени, но это вовсе не попытка разрешить такие противоречия.

Апория «Ахилл и черепаха» противостоит идее бесконечной делимости пространства и времени. Быстроногий Ахилл соревнуется в беге с черепахой и благородно предоставляет ей фору. Пока он пробежит расстояние, отделяющее его от точки отправления черепахи, последняя проползет дальше; расстояние между Ахиллом и черепахой сократилось, но черепаха сохраняет преимущество. Пока Ахилл пробежит расстояние, отделяющее его от черепахи, черепаха снова проползет еще немного вперед, и т.д. Если пространство бесконечно делимо, Ахилл никогда не сможет догнать черепаху. Этот парадокс построен на трудности суммирования бесконечного числа все более малых величин и невозможности интуитивно представить себе, что эта сумма равняется конечной величине.

Еще более явным этот момент становится в апории «Дихотомия»: прежде чем пройти некоторый отрезок, движущееся тело вначале должно пройти половину этого отрезка, затем половину половины, и так далее до бесконечности. Зенон мысленно строит ряд 1/2 + (1/2) 2 + (1/2) 3 +., сумма которого равна 1, но ему не удается интуитивно постичь содержание этого понятия. Современные представления о пределе и сходимости ряда позволяют утверждать, что начиная с некоторого момента расстояние между Ахиллом и черепахой станет меньше любого заданного числа, выбранного сколь угодно малым.

Парадокс «Стрела» основан на предположении, что пространство и время составлены из неделимых элементов, скажем «точек» и «моментов». В некий «момент» своего полета стрела находится в некоторой «точке» пространства в неподвижном состоянии. Поскольку это верно в каждый момент ее полета, стрела вообще не может находиться в движении.

Здесь затронут вопрос о мгновенной скорости. Какое значение следует придать отношению x/t пройденного расстояния x к интервалу времени t, когда величина t становится очень малой ? Неспособные представить себе минимум, отличный от нуля, древние придали ему значение ноль. Ныне при помощи понятия предела правильный ответ находится немедленно: мгновенная скорость есть предел отношения x/t при t, стремящемся к нулю

Таким образом, все эти парадоксы связаны с понятием предела; оно стало центральным понятием исчисления бесконечно малых.

Парадоксы Зенона известны нам благодаря Аристотелю, который привел их в своей «Физике», чтобы подвергнуть критике. Он различает бесконечность относительно сложения и бесконечность относительно деления и устанавливает, что континуум бесконечно делим. Время тоже бесконечно делимо, и в конечный интервал времени можно пройти бесконечно делимое расстояние. Парадокс «Стрела», который «является следствием предположения, что время составлено из моментов», становится нелепым, если принять, что время бесконечно делимо.