Замораживание различных вод

Добрый день, Олег!

Я прочитала некоторые Ваши работы и у меня возникли вопросы. Если нетрудно прошу Вас помочь или направить на научные работы в этой отрасли. Я исследую свойства талой воды. На данный момент проведены опыты с замораживанием различных вод (водопроводная с разным рН, артезианской, бутиллированной). Цель - изучение хим. состава после замораживания. Однако столкнулась с некоторыми трудностями в этой области.

1) Существует ли зависимость качества талой воды от температуры ее замораживания? Я проводила опыты, когда температура в камере –17 С. Других вариантов технически пока нет возможности провести.

2) Вы описывали, что меняется структура воды. И применяете понятия - "структурированная вода". Что это? Как качественно это отражается на воде? Просто общие понятия меня не могут убедить. Были ли опыты Ваши личные или Ваших коллег по изучению этого факта? В некоторых работах встречается понятие, что талая вода сохраняет свою структуру только короткий промежуток времени - почему?

3) На данный момент нашла ссылки только на японского ученого о том, что вода имеет "память", опыты которого никто не смог повторить, а следовательно и опровергнуть или доказать. Ваше мнение? Спасибо за внимание.

Буду благодарна за любой Ваш ответ.

С ув., Наталья Федотова

Ответ:

Уважаемая Наталья,

Спасибо за Ваш интерес к нашему сайту и моим работам по воде. Термин “структурированная вода”, т.е. вода с регулярной структурой был введён относительно давно и связан с кластерной моделью строения воды. Сейчас существует большое количество различных теорий и моделей, объясняющих структуру и свойства воды. Общим у них является представление о водородных связях как основном факторе, определяющем образование структурированных агломератов. Вода кооперативная система, в ней существуют цепные образования водородных связей. И всякое воздействие на воду распространяется эстафетным путем на тысячи межатомных расстояний. При объяснении многих экспериментальных данных чаще всего используют двухструктурные модели, предполагающие одновременное присутствие в воде льдоподобной и плотноупакованной структур.

Вода структурируется, т.е. приобретает особую регулярную структуру при воздействии многих структурирующих факторов, например, при замораживании-оттаивании воды (считается, что в такой воде сохраняются “ледяные” кластеры), воздействии постоянного магнитного или электромагнитного поля, при поляризации молекул воды и др. К числу факторов, приводящих к изменению структуры и свойств воды, относятся различные излучения и поля (электрические, магнитные, гравитационные и, возможно, ряд других, еще не известных, в частности, связанных с биоэнергетическим воздействием человека), механические воздействия (перемешивание разной интенсивности, встряхивание, течение в различных режимах и т.д.), а также их всевозможные сочетания. Такая структурированная вода становится активной и несёт новые свойства.

Две воды – обычная и структурированная, имеющие одинаковый элементный состав, но различную структуру, по воздействию на растения, птиц, животных и организм человека, т.е. на биологические объекты, могут оказывать абсолютно различное влияние. Всё зависит от формы соединения молекул в регулярную ассоциативную структуру, при котором появляются свойства, которые могут положительно воздействовать на биологические объекты.

Наукой доказано, что особенности физических свойств воды и многочисленные короткоживущие водородные связи между соседними атомами водорода и кислорода в молекуле воды создают благоприятные возможности для образования особых структур-ассоциатов (кластеров), воспринимающих, хранящих и передающих самую различную информацию.

Ещё в 1990 г. чл.-корр. АН СССР Г.А. Домрачев (Ин-т металлоорганической химии РАН) и физик Д.А. Селивановский (Ин-т прикладной физики РАН) сформулировали гипотезу о существовании механохимических реакций радикальной диссоциации воды [Домрачев, 1995]. Они исходили из того, что жидкая вода представляет собой динамически нестабильную полимерную систему и что по аналогии с механохимическими реакциями в полимерах при механических воздействиях на воду поглощенная водой энергия, необходимая для разрыва Н-ОН, локализуется в микромасштабной области структуры жидкой воды. Реакцию разрыва Н-ОН связи можно записать так: (Н2О)n2О...H-|-OH) (Н2О)m + E2О)n+1(H ) + ( OH) (Н2О)m, где “ E” обозначает не спаренный электрон.

Поскольку диссоциация молекул воды и реакции с участием радикалов H и OH происходит в ассоциированном состоянии жидкой воды, радикалы могут иметь громадные (десятки секунд и более) продолжительности жизни до гибели в результате реакций рекомбинации [Blough et al., 1990].

Таким образом, существуют достаточно убедительные научные свидетельства в пользу того, что в жидкой воде присутствуют весьма устойчивые полимерные структуры. В 1993 году американский химик Кен Джордан предложил свои варианты устойчивых “квантов воды”, которые состоят из 6 её молекул [Tsai & Jordan, 1993]. Эти кластеры могут объединяться друг с другом и со “свободными” молекулами воды за счет экспонированных на их поверхности водородных связей. Интересной особенностью этой модели является то, что из нее автоматически следует, что свободно растущие кристаллы воды, хорошо известные нам снежинки, должны обладать 6-лучевой симметрией.

 

 

 

В 2002 году группе д-ра Хэд-Гордона методом рентгеноструктурного анализа с помощью сверхмощного рентгеновского источника Advanced Light Source (ALS) удалось показать, что молекулы воды способны за счет водородных связей образовывать собой топологические цепочки и кольца из множества молекул djls.

Другая исследовательская группа Нильссона из синхротронной лаборатории всё того же Стенфордского университета, интерпретируя полученные экспериментальные данные как наличие структурных цепочек и колец, считает их довольно долгоживущими элементами структуры.

Несмотря на то, что разные модели предлагают отличающиеся по своей геометрии кластеры, все они постулируют, что молекулы воды способны объединяться с образованием полимеров. Но классический полимер – это молекула, все атомы которой объединены ковалентными связями, а не водородными, которые до недавнего времени считались чисто электростатическими. Однако в 1999 г. было экспериментально показано, что водородная связь между молекулами воды во льду имеет частично (на 10%) ковалентный характер [Isaacs E. D., et al.,1999]. Даже частично ковалентный характер водородной связи “разрешает”, по меньшей мере, 10% молекул воды объединяться в достаточно долгоживущие полимеры (неважно, какой конкретной структуры).

Модель структурированной воды определяет почти все её аномальные свойства, имеющие огромное практическое значение - вода самое аномальное из всех известных природе веществ. Диаметр молекулы воды 2,8 А (1 ангстрем = 10-10м). Если рассматривать воду как простую совокупность молекул Н2О, то оказывается, что её удельный вес должен составлять 1,84 г/см3, а температура её кипения будет равна 63,5°С. Но, как известно, при нормальной температуре и давлении удельный вес воды равен 1 г/см3, а кипит вода при 100°С. Исходя из этого, следует предположить, что внутри воды должны быть пустоты, где нет молекул Н2О, то есть воде присуща особая структура.

Интересно, что свободные, не связанные в ассоциаты молекулы воды присутствуют в воде лишь в очень небольшом количестве. В основном же вода – это совокупность беспорядочных ассоциатов и «водяных кристаллов», где количество связанных в водородные связи молекул может достигать сотен и даже тысяч единиц.

«Водяные кристаллы» могут иметь самую разную форму, как пространственную, так и двухмерную (в виде кольцевых структур). В основе же всего лежит тетраэдр (простейшая пирамида в четыре угла). Именно такую форму имеют распределенные положительные и отрицательные заряды в молекуле воды. Группируясь, тетраэдры молекул H2O образуют  разнообразные пространственные и плоскостные структуры. Из всего многообразия структур в природе базовой, судя по всему (пока лишь не точно доказанное предположение) является всего одна – гексагональная (шестигранная), когда шесть молекул воды (тетраэдров) объединяются в кольцо.

Именно такой тип структуры характерен для льда, снега, талой воды, клеточной воды всех живых существ.

Рис. Кристаллическая структура льда

Каждая молекула воды в кристаллической структуре льда участвует в 4 водородных связях, направленных к вершинам тетраэдра. В центре этого тетраэдра находится атом кислорода, в двух вершинах — по атому водорода, электроны которых задействованы в образовании ковалентной связи с кислородом. Две оставшиеся вершины занимают пары валентных электронов кислорода, которые не участвуют в образовании внутримолекулярных связей. При взаимодействии протона одной молекулы с парой неподеленных электронов кислорода другой молекулы возникает водородная связь, менее сильная, чем связь внутримолекулярная, но достаточно могущественная, чтобы удерживать рядом соседние молекулы воды. Каждая молекула может одновременно образовывать четыре водородные связи с другими молекулами под строго определенными углами, равными 109°28', направленных к вершинам тетраэдра, которые не позволяют при замерзании создавать плотную структуру (при этом в структурах льда I, Ic, VII и VIII этот тетраэдр правильный).

Когда лёд плавится, его тетрагональная структура разрушается и образуется смесь полимеров, состоящая из три-, тетра-, пента-, и гексамеров воды и свободных молекул воды. Схематически этот процесс показан ниже.


Рис. Структура жидкой воды. В воде кластеры периодически разрушаются и образуются снова. Время перескока составляет 10-12 секунд.

Изучить строение этих образующихся полимеров воды оказалось довольно сложно, поскольку вода – смесь различных полимеров, которые находятся в равновесии между собой. Сталкиваясь друг с другом, полимеры переходят один в другой, разлагаются и вновь образуются. Поэтому разделить эту смесь на отдельные компоненты тоже практически невозможно. Лишь в 1993 году группа исследователей из Калифорнийского университета (г. Беркли, США) под руководством доктора Р.Дж.Сайкалли расшифровала строение триммера воды, в 1996 г. – тетрамера и пентамера, а затем и гексамера воды. К этому времени уже было установлено, что жидкая вода состоит из полимерных ассоциатов (кластеров), содержащих от трех до шести моле

 

кул воды. Все они цикличны, т. е. образуют довольно устойчивые «кольца».

Структуры кластеров воды были найдены и теоретически, сегодняшняя вычислительная техника позволяет это сделать. Более того, именно сопоставлением экспериментально найденных и рассчитанных параметров удалось доказать, что полимеры имеют то строение, которое описано выше.

Рис. Формирование отдельного кластера воды (компъютерное моделирование)

В 1999 г. Станислав Зенин провёл совместно с Б. Полануэром (сейчас в США) исследование воды в ГНИИ генетики, которые дали интереснейшие результаты. Применив современные методы анализа, как-то рефрактометрического, протонного резонанса и жидкостной хроматографии исследователям удалось обнаружить полиассооциаты - "кванты" воды.

 

Рис. справа -  Возможные кластеры воды

Вода, состоящая из множества кластеров различных типов, образует иерархическую пространственную жидкокристаллическую структуру, которая может воспринимать и хранить огромные объемы информации.

 

Рис. Более сложные ассоциаты кластеров воды - смотрите рисунок ниже

Порядковое число таких структур воды так же высоко, как и порядковое число кристаллов (структура с максимально высоким упорядочением, которую мы только знаем), потому их также называют «жидкими кристаллами» или «кристаллической водой».

"Кванты воды" могут взаимодействовать друг с другом за счет свободных водородных связей, торчащих наружу из вершин “кванта” своими гранями. При этом возможно образование уже двух типов структур второго порядка. Их взаимодействие друг с другом приводит к появлению структур высшего порядка. Последние состоят из 912 молекул воды, которые по модели Зенина практически не способны к взаимодействию за счет образования водородных связей. Этим и объясняется, например, высокая текучесть жидкости, состоящей из громадных полимеров. Таким образом, водная среда представляет собой как бы иерархически организованный жидкий кристалл. Молекул воды в этом ассоциате совершают нерегулярные колебания с частотой около 0,5 пс и амплитудой 1 ангстрем. Наблюдались также и редкие медленные скачки на ангстремы, которые длятся пикосекунды. В общем, за 30 пс молекула может сместиться на 8-10 ангстрем. Время жизни локального кластерного окружения тоже невелико. Области, составленные из кластеров могут распасться за 0,5 пс, а могут жить и несколько пикосекунд. А вот распределение времён жизни водородных связей очень велико. Но это время не превышает 40 пс, а среднее значение — несколько пс.

Самый яркий пример структурированной воды - талая вода, которую получают методом замораживания-оттаивания. Она появляется при таянии льда и сохраняет температуру 0 °С, пока не растает весь лёд. Режим заморозки должен быть равномерным. Специфика межмолекулярных взаимодействий, характерная для структуры льда, сохраняется и в талой воде, так как при плавлении кристалла льда разрушается только 15% всех водородных связей. Поэтому присущая льду связь каждой молекулы воды с четырьмя соседними («ближний порядок») в значительной степени не нарушается, хотя и наблюдается бoльшая размытость кислородной каркасной решётки.

Структурированная талая вода обладает особой внутренней динамикой и особым «биологическим воздействием», которые могут сохраняться в течение длительного времени (см. например В. Белянин, Е. Романова, Жизнь, молекула воды и золотая пропорция, «Наука и жизнь», Номер 10, 2004 г.). Так, структура воды при фазовом переходе меняется на 15-18%, а показатель рН изменяется от 6,2 до 7,3; электрическое сопротивление уменьшается (появление большего количества электронов увеличивает электропроводность воды), сопротивление структурированной воды R1 =310ом, сопротивление воды первоначальной – R2 =500ом (ΔR=38%); уменьшается окислительно-восстановительный потенциал (ОВП1 холодной воды из крана = 387mV, ОВП2 структурированной воды = 0,51mV).

После таяния всего льда температура воды повышается и водородные связи внутри кластеров перестают противостоять возрастающим тепловым колебаниям атомов.

Рис. Рыхлые, льдоподобные структуры структуры в талой воде.

Получить структурированную воду (т.е. воду с регулярной структурой) можно и с помощью её намагничивания магнитным полем. При этом молекулы воды, представляющие собой маленькие диполи, выстроятся вдоль линий магнитного поля, совершая небольшие колебательные движения в вертикальной плоскости.

В заключение следует подчеркнуть, что и сама теория структурированной воды имеет много подводных камней. Например, сам Зенин предполагает, что основной структурный элемент воды — кластер из 57 молекул, образованный слиянием четырёх додекаэдров. Они имеют общие грани, а их центры образуют правильный тетраэдр. То, что молекулы воды могут располагаться по вершинам пентагонального додекаэдра, известно давно; такой додекаэдр — основа газовых гидратов. Поэтому ничего удивительного в предположении о существовании таких структур в воде нет, хотя уже говорилось, что никакая конкретная структура не может быть преобладающей и существовать долго. Поэтому странно, что этот элемент предполагается главным и что в него входит ровно 57 молекул. Из шариков, например, можно собирать такие же структуры, которые состоят из примыкающих друг к другу додекаэдров и содержат 200 молекул. Зенин же утверждает, что процесс трёхмерной полимеризации воды останавливается на 57 молекулах. Более крупных ассоциатов, по его мнению, быть не должно. Однако если бы это было так, из водяного пара не могли бы осаждаться кристаллы гексагонального льда, которые содержат огромное число молекул, связанных воедино водородными связями. Совершенно неясно, почему рост кластера Зенина остановился на 57 молекулах.

Чтобы уйти от противоречий, Зенин и упаковывает кластеры в более сложные образования — ромбоэдры — из почти тысячи молекул, причём исходные кластеры друг с другом водородных связей не образуют. Почему? Чем молекулы на их поверхности отличаются от тех, что внутри? По мнению Зенина, узор гидроксильных групп на поверхности ромбоэдров и обеспечивает память воды. Следовательно, молекулы воды в этих крупных комплексах жёстко фиксированы, и сами комплексы представляют собой твёрдые тела. Такая вода не будет течь, а температура её плавления, которая связана с молекулярной массой, должна быть весьма высокой.

С уважением,

К.х.н. О.В. Мосин