Лёд

К.х.н. О.В. Мосин
ЛЁД – ТАИНСТВЕННЫЙ И НЕОБЫКНОВЕННЫЙ

Лёд – кристаллическая модификация воды. По последним данным лёд имеет 14 структурных модификаций. Среди них есть и кристаллические (их большинство) и аморфные модификации, но все они отличаются друг от друга взаимным расположением молекул воды и свойствами. Правда, все, кроме привычного нам льда, кристаллизующего в гексагональной сингонии, образуются в условиях экзотических — при очень низких температурах и высоких давлениях, когда углы водородных связей в молекуле воды изменяются и образуются системы, отличные от гексагональной. Такие условия напоминают космические и не встречаются на Земле. Например, при температуре ниже –110 °С водяные пары выпадают на металлической пластине в виде октаэдров и кубиков размером в несколько нанометров — это так называемый кубический лед. Если температура чуть выше –110 °С, а концентрация пара очень мала, на пластине формируется слой исключительно плотного аморфного льда.

Самое необычное свойство льда — это удивительное многообразие внешних проявлений. При одной и той же кристаллической структуре он может выглядеть совершенно по-разному, принимая форму прозрачных градин и сосулек, хлопьев пушистого снега, плотной блестящей корки льда или гигантских ледниковых масс.

Кристаллическая структура льда похожа на структуру алмаза: каждая молекула Н2O окружена четырьмя ближайшими к ней молекулами, находящимися на одинаковых расстояниях от нее, равных 2,76 ангстрем и размещенных в вершинах правильного тетраэдра. В связи с низким координационным числом структура льда является сетчатой, что влияет на его невысокую плотность.

В природе лёд представлен главным образом, одной кристаллической разновидностью, кристаллизующейся в гексагональной решётке, с плотностью 931 кг/м3. Лёд встречается в природе в виде собственно льда (материкового, плавающего, подземного), а также в виде снега, инея и т. д. Поскольку лёд легче жидкой воды, то образуется он на поверхности водоёмов, что препятствует дальнейшему замерзанию воды.

Природный лёд обычно значительно чище, чем вода, так как при кристаллизации воды в первую очередь в решётку встают молекулы воды, а примеси вытесняются в жидкость.

Лёд может содержать механические примеси — твёрдые частицы, капельки концентрированных растворов, пузырьки газа. Наличием кристалликов соли и капелек рассола объясняется солоноватость морского льда.

Растущий кристалл льда всегда стремится создать идеальную кристаллическую решетку и вытесняет посторонние вещества. Но в планетарном масштабе именно замечательный феномен замерзания и таяния воды играет роль гигантского очистительного процесса - вода на Земле постоянно очищает сама себя.

Общие запасы льда на Земле около 30 млн. км3. Больше всего льда сосредоточено в Антарктиде, где толщина его слоя достигает 4 км. Также имеются данные о наличии льда на планетах Солнечной системы и в кометах.

Модификации льда

Наиболее изученным является лёд I-й природной модификации. Лёд встречается в природе в виде льда (материкового, плавающего, подземного и т.д.), а также в виде снега, инея и т.д. Он распространён во всех областях обитания человека. Собираясь в огромных количествах, снег и лед образуют особые структуры с принципиально иными, нежели у отдельных кристаллов или снежинок, свойствами. Ледники, ледяные покровы, вечная мерзлота, сезонный снежный покров существенно влияют на климат больших регионов и планеты в целом: даже те, кто никогда не видел снега, чувствуют на себе дыхание его масс, скопившихся на полюсах Земли, например, в виде многолетних колебаний уровня Мирового океана. Лед имеет столь большое значение для облика нашей планеты и комфортного обитания на ней живых существ, что ученые отвели для него особую среду — криосферу, которая простирает свои владения высоко в атмосферу и глубоко в земную кору.
Природный лёд обычно значительно чище, чем вода, т.к. растворимость веществ (кроме NH4F) во льде крайне низкая.

Табл. 1. — Некоторые свойства льда I

 

Свойство

Значение

Примечание

Теплоемкость, кал/(г··°C)

Теплота таяния, кал/г

Теплота парообразования, кал/г

0,51 (0°C)

79,69

677

Сильно уменьшается с понижением температуры

Коэффициент термического расширения, 1/°C

9,1·10—5 (0°C)

 

Теплопроводность, кал/(см сек··°C)

4,99·10—3

 

Показатель преломления:

  для обыкновенного луча

  для необыкновенного луча

 

1,309 (—3°C)

1,3104 (—3°C)

 

Удельная электрическая проводимость, ом—1·см—1

 

10—9 (0°C)

Кажущаяся энергия активации 11ккал/моль

Поверхностная электропроводность, ом—1

 

10—10 (—11°C)

Кажущаяся энергия активации 32ккал/моль

Модуль Юнга, дин/см

9·1010 (—5°C)

Поликристаллич. лёд

Сопротивление, Мн/м2 :

  раздавливанию

  разрыву

  срезу

 

2,5

1,11

0,57

 

Поликристаллический лёд

Поликристаллический лёд

Поликристаллический лёд

Средняя эффективная вязкость, пз

1014

Поликристаллический лёд

Показатель степени степенного закона течения

 

3

 

Энергия активации при деформировании и механической релаксации, ккал/моль

 

 

11,44—21,3

Линейно растет на 0,0361 ккал/(моль·°C) от 0 до 273,16 К

 

Примечание. 1 кал/(г°С)=4,186 кджl (kг (К); 1 ом-1см-1=100 сим/м; 1 дин/см=10-3 н/м; 1 кал/(см (сек°С)=418,68 вт/(м (К); 1 пз=10-1 н (сек/м2.

Табл. 2. — Количество, распространение и время жизни льда

 

Вид льда

Масса

Площадь распространения

Средняя концен
трация, г/см2

Скорость прироста массы, г/год

Среднее время жизни, год

 

г

%

млн. км2

%

 

 

 

Ледники

2,4·1022

98,95

16,1

10,9

суши

1,48·105

2,5·1018

9580

Подземный лёд

2·1020

0,83

21

14,1

суши

9,52·103

6·1018

30—75

Морской лёд

3,5·1019

0,14

26

7,2

океана

1,34·102

3,3·1019

1,05

Снежный покров

1,0·1019

0,04

72,4

14,2

Земли

14,5

2·1019

0.3—0,5

Айсберги

7,6·1018

0,03

63,5

18,7

океана

14,3

1,9·1018

4,07

Атмосферный лёд

1,7·1018

0,01

510,1

100

Земли

3,3·10—1

3,9·1020

4·10—3

 

В связи с широким распространением воды и льда на Земле отличие свойств льда от свойств других веществ играет важную роль в природных процессах. Вследствие меньшей, чем у воды, плотности лёд образует на поверхности воды плавучий покров, предохраняющий реки и водоёмы от донного замерзания. Зависимость между скоростью течения и напряжением у поликристаллического льда гиперболическая; при приближённом описании её степенным уравнением показатель степени увеличивается по мере роста напряжения.

Кроме того, скорость течения льда прямо пропорциональна энергии активации и обратно пропорциональна абсолютной температуре, так что с понижением температуры лёд приближается по своим свойствам к абсолютно твёрдому телу. В среднем при близкой к таянию температуре текучесть льда в 106 раз выше, чем у горных пород. Благодаря своей текучести лёд не накопляется в одном месте, а в виде ледников постоянно перемещается.

Лед трудно расплавить, как бы ни странно это звучало. Не будь водородных связей, сцепляющих молекулы воды, он плавился бы при –90°С. При этом, замерзая, вода не уменьшается в объеме, как это происходит с большинством известных веществ, а увеличивается — за счет образования сетчатой структуры льда.

Вследствие очень высокой отражательной способности льда (0,45) и снега (до 0,95) покрытая ими площадь — в среднем за год около 72 млн. км2 в высоких и средних широтах обоих полушарий — получает солнечного тепла на 65% меньше нормы и является мощным источником охлаждения земной поверхности, чем в значительной мере обусловлена современная широтная климатическая зональность. Летом в полярных областях солнечная радиация больше, чем в экваториальном поясе, тем не менее температура остаётся низкой, т. к. значительная часть поглощаемого тепла затрачивается на таяние льда, имеющего очень высокую теплоту таяния.

К другим необычным свойствам льда относят и генерацию электромагнитного излучения его растущими кристаллами. Известно, что большинство растворенных в воде примесей не передается льду, когда он начинает расти; они вымораживается. Поэтому даже на самой грязной луже пленка льда чистая и прозрачная. При этом примеси скапливаются на границе твердой и жидкой сред, в виде двух слоев электрических зарядов разного знака, которые вызывают значительную разность потенциалов. Заряженный слой примесей перемещается вместе с нижней границей молодого льда и излучает электромагнитные волны. Благодаря этому процесс кристаллизации можно наблюдать в деталях. Так, кристалл, растущий в длину в виде иголки, излучает иначе, чем покрывающийся боковыми отростками, а излучение растущих зерен отличается от того, что возникает, когда кристаллы трескаются. По форме, последовательности, частоте и амплитуде импульсов излучения можно определить, с какой скоростью замерзает лед и какая при этом получается ледовая структура.

Лёд II, III и V-й модификации длительное время сохраняются при атмосферном давлении, если температура не превышает —170°С. При нагревании приблизительно до —150°С лёд превращаются в кубический лёд Ic.

При конденсации паров воды на более холодной подложке образуется аморфный лёд. Обе эти формы льда могут самопроизвольно переходить в гексагональный лёд, причём тем скорее, чем выше температура.

Лёд IV-й модификации является метастабильной фазой льда. Он образуется гораздо легче и особенно стабилен, если давлению подвергается тяжёлая вода.

Кривая плавления льда V и VII исследована до давления 20 Гн/м2 (200 тыс. кгс/см2). При этом давлении лёд VII плавится при температуре 400°С.

Лёд VIII является низкотемпературной упорядоченной формой льда VII.

Лёд IX — метастабильная фаза, возникающая при переохлаждении льда III и по существу представляющая собой его низкотемпературную форму.

Впервые полиморфизм льда был обнаружен Г. Тамманом в 1900 г. и подробно изучен П. Бриджеменом в 1912 г. В табл. 3 и 4 приведены некоторые данные о структурах модификаций льда и некоторые их свойства.

Табл. 3. — Некоторые данные о структурах модификаций льда

 

Модифи
кация

Сингония

Фёдоровская группа

Длины водородных связей, 

Углы О—О—О в тетраэдрах

I

Ic

II

III

V

VI

VII

VIII

IX

Гексагональная

Кубическая

Тригональная

Тетрагональная

Моноклинная

Тетрагональная

Кубическая

Кубическая

Тетрагональная

P63/mmc

F43m

R3

P41212

A2/a

P42/nmc

Im3m

Im3m

P41212

2,76

2,76

2,75—2,84

2,76—2,8

2,76—2,87

2,79—2,82

2,86

2,86

2,76—2,8

109,5

109,5

80—128

87—141

84—135

76—128

109,5

109,5

87—141

 

Примечание. 1 A=10-10 м.

Табл. 4. — Плотность и статическая диэлектрическая проницаемость различных льдов

 

Модификация

Темп-ра, °С

Давление, Мн/м2

Плотность, г/см2

Диэлектрическая проницаемость

I

Ic

II

III

V

VI

VII

VIII

IX

0

—130

—35

—22

—5

15

25

—50

—110

0,1

0,1

210

200

530

800

2500

2500

230

0,92

0,93

1,18

1,15

1,26

1,34

1,65

1,66

1,16

94

3,7

117

144

193

~150

~3

~4

 

Две последние модификации льда — XIII и XIV — открыли ученые из Оксфорда совсем недавно, в 2006 году. Предположение о том, что должны существовать кристаллы льда с моноклинной и ромбической решетками, было трудно подтвердить: вязкость воды при температуре –160°С очень высока, и собраться вместе молекулам чистой переохлажденной воды в таком количестве, чтобы образовался зародыш кристалла, трудно. Этого удалось достичь с помощью катализатора — соляной кислоты, которая повысила подвижность молекул воды при низких температурах. В земной природе подобные модификации льда образовываться не могут, но они могут встречаться на замерзших спутниках других планет.

Разгадка структуры льда заключается в строении его молекулы. Кристаллы всех модификаций льда построены из молекул воды H2O, соединённых водородными связями в трёхмерный каркас (рис. 1). Молекулу воды можно упрощенно представить себе в виде тетраэдра (пирамиды с треугольным основанием). В её центре находится атом кислорода, в двух вершинах — по атому водорода, электроны которых задействованы в образовании ковалентной связи с кислородом. Две оставшиеся вершины занимают пары валентных электронов кислорода, которые не участвуют в образовании внутримолекулярных связей, поэтому их называют неподеленными.


Рис.1. Структура льда.

Каждая молекула участвует в 4 таких связях, направленных к вершинам тетраэдра. При взаимодействии протона одной молекулы с парой неподеленных электронов кислорода другой молекулы возникает водородная связь, менее сильная, чем связь внутримолекулярная, но достаточно могущественная, чтобы удерживать рядом соседние молекулы воды. Каждая молекула может одновременно образовывать четыре водородные связи с другими молекулами под строго определенными углами, равными 109°28', направленных к вершинам тетраэдра, которые не позволяют при замерзании создавать плотную структуру. При этом в структурах льда I, Ic, VII и VIII этот тетраэдр правильный. В структурах льда II, III, V и VI тетраэдры заметно искажены. В структурах льда VI, VII и VIII можно выделить 2 взаимоперекрещивающиеся системы водородных связей. Этот невидимый каркас из водородных связей располагает молекулы в виде сетчатой сетки, по структуре напоминающей соты с полыми каналами. Если лед нагреть, сетчатая структура разрушится: молекулы воды начинают проваливаться в пустоты сетки, приводя к более плотной структуре жидкости, — поэтому вода тяжелее льда.

Лед, который образуется при атмосферном давлении и плавится при 0 °С, — самое привычное, но всё же до конца не понятное вещество. Многое в его структуре и свойствах выглядит необычно. В узлах кристаллической решетки льда атомы кислорода выстроены упорядоченно, образуя правильные шестиугольники, а атомы водорода занимают самые разные положения вдоль связей. Поэтому возможны 6 эквивалентных ориентаций молекул воды относительно их соседей. Часть из них исключается, поскольку нахождение одновременно 2 протонов на одной водородной связи маловероятно, но остаётся достаточная неопределённость в ориентации молекул воды. Такое поведение атомов нетипично, поскольку в твердом веществе все подчиняются одному закону: либо все атомы расположены упорядоченно, и тогда это — кристалл, либо случайно, и тогда это — аморфное вещество. Такая необычная структура может реализоваться в большинстве модификаций льда — I, III, V, VI и VII (и по-видимому в Ic), а в структуре льда II, VIII и IX молекулы воды ориентационно упорядочены. По выражению Дж. Бернала лёд кристалличен в отношении атомов кислорода и стеклообразен в отношении атомов водорода.

Значение льда трудно недооценить. Лёд оказывает большое влияние на условия обитания и жизнедеятельности растений и животных, на разные виды хозяйственной деятельности человека. Покрывая воду сверху, лед играет в природе роль своего рода плавучего экрана, защищающего реки и водоемы от дальнейшего замерзания и сохраняющего жизнь подводному миру. Если бы плотность воды увеличивалась при замерзании, лед оказался бы тяжелее воды и начал тонуть, что привело бы к гибели всех живых существ в реках, озерах и океанах, которые замерзли бы целиком, превратившись в глыбы льда, а Земля стала ледяной пустыней, что неизбежно привело бы к гибели всего живого.

Лёд может вызывать ряд стихийных бедствий с вредными и разрушительными последствиями - обледенение летательных аппаратов, судов, сооружений, дорожного полотна и почвы, град, метели и снежные заносы, речные заторы с наводнениями, ледяные обвалы и др. Прогнозирование, обнаружение, предотвращение вредных явлений, борьба с ними и использование льда в различных целях (снегозадержание, устройство ледяных переправ, изотермических складов, облицовка хранилищ, льдозакладка шахт и т.п.) представляют предмет ряда разделов гидрометеорологических и инженерно-технических знаний (ледотехника, снеготехника, инженерное мерзлотоведение и др.), деятельности специальных служб (ледовая разведка, ледокольный транспорт, снегоуборочная техника, искусственное сбрасывание лавин и т.д.).

Природный лёд используется для хранения и охлаждения пищевых продуктов, биологических и медицинских препаратов, для чего он специально производится и заготавливается.