КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ С ВОДОЙ

Здравствуйте!! Помогите пожалуйста найти ответ на такой вопрос: "Процессы комплексообразования в гидросфере. Природные и синтетические комплексообразователи".

Заранее спасибо.

Процессы комплексообразования в гидросфере
Природные и синтетические комплексообразователи

Здравствуйте, Мария.

Это целое отдельное исследование, информацию по которому можно найти в специальной литературе. При анализе данной проблемы следует знать гидрохимию, качественный и количественный состав гидросферы, способность ионов металлов и тяжелых металлов в составе гидросферы к гидролизу и гидролитической полимеризации, а также лигандный состав самой гидросферы - наличие в ней органических гуминовых кислот и, следовательно, формы существования в них комплексообразующих ионов металлов.

Комплексные соединения — это частицы (нейтральные молекулы или ионы), которые образуются в результате присоединения к данному иону (или атому), называемому комплексообразователем, нейтральных молекул или других ионов, называемых лигандами.

Лигандами могут быть частицы, до образования комплексного соединения представлявшие собой молекулы (H2O, CO, NH3 и др.), анионы (OH, Cl, PO43 и др.), а также катион водорода. Различают унидентатные или монодентатные лиганды (связанные с центральным атомом через один из своих атомов, то есть, одной -связью), бидентатные (связанные с центральным атомом через два своих атома, то есть, двумя -связями), тридентатные и т. д.

По заряду комплексные частицы могут быть катионами, анионами, а также нейтральными молекулами. Комплексные соединения, включающие такие частицы, могут относиться к различным классам химических веществ (кислотам, основаниям, солям). Примеры: (H3O)[AuCl4] – кислота, [Ag(NH3)2]OH – основание, NH4Cl и K3[Fe(CN)6] – соли.

Обычно комплексообразователь – атом элемента, образующего металл, но это может быть и атом кислорода, азота, серы, йода и других элементов, образующих неметаллы. Степень окисления комплексообразователя может быть положительной, отрицательной или равной нулю; при образовании комплексного соединения из более простых веществ она не меняется.

Координационное число определяется количеством лигандов и зависит от электронного строения центрального атома, от его степени окисления, размеров центрального атома и лигандов, условий образования комплексного соединения, температуры и других факторов. КЧ может принимать значения от 2 до 12. Чаще всего оно равно шести, несколько реже – четырем.

Пример комплексного соединения

 

Под действием создаваемого ионом электрического поля молекулы воды определенным образом ориентируются и затем притягиваются к иону противоположно заряженным концом диполя. За счет такого притяжения в растворе образуется гидратированный ион. Если впоследствии раствор будет концентрироваться из него станут выделяться кристаллы растворенного вещества, заключающие в своем составе данный ион. Если при этом непосредственно окружающие его в молекулы воды связаны с ним непрочно, то вода не войдет в состав кристалла. Если связь иона с молекулами воды достаточно прочна, то в состав кристалла он войдет с некоторым числом молекул связанной «кристаллизационной» воды. В результате получится кристаллогидрат данного вещества, представляющий собой комплексное соединение. Например, фиолетовый кристаллогидрат СrСl3 ·6Н2 О является в действительности комплексным соединением [Сr(ОН2 )6 ]Сl3 , в котором комплексообразующий ион (Сr3+) удерживает во внутренней сфере шесть молекул воды. Подобным же образом как комплексные соединения следует рассматривать и многие другие кристаллогидраты солей.

Образование комплексного соединения может происходить при взаимодействии иона не только с водой в водной среде, но и с другими нейтральными молекулами. Например, при действии аммиака на водный раствор СuСl2 образуется комплекс состава [Cu(NH3 )4 ]Cl2 , диссоциирующий на ионы [Cu(NH3 )4 ]2+и 2Сl.

Комплексообразование не обязательно должно протекать в водном растворе – комплексные соединения часто образуются и при взаимодействии твердых веществ с газообразными. Например, безводный СаСl2 в атмосфере газообразного аммиака дает комплекс состава [Ca(NH3 )8 ]Cl2 . При этом сущность самого процесса остается при этом той же самой и заключается в присоединении нейтральных молекул к тому или иному иону соли за счет возникающего между ними взаимного притяжения.

Используются два вида структурных формул комплексных частиц: с указанием формального заряда центрального атома и лигандов, или с указанием формального заряда всей комплексной частицы. Примеры:

Для характеристики формы комплексной частицы используется представление о координационном полиэдре (многограннике).

 

Входящие в состав комплексных соединений комплексные частицы довольно разнообразны. Поэтому для их классификации используется несколько классификационных признаков: число центральных атомов, тип лиганда, координационное число и другие.

По числу центральных атомов комплексные частицы делятся на одноядерные и многоядерные. Центральные атомы многоядерных комплексных частиц могут быть связаны между собой либо непосредственно, либо через лиганды. И в том, и в другом случае центральные атомы с лигандами образуют единую внутреннюю сферу комплексного соединения:

 

По типу лигандов комплексные частицы делятся на

1) Аквакомплексы, то есть комплексные частицы, в которых в качестве лигандов присутствуют молекулы воды. Более или менее устойчивы катионные аквакомплексы [M(H2O)n]m, анионные аквакомплексы неустойчивы. Все кристаллогидраты относятся к соединениям, содержащим аквакомплексы, например:

Mg(ClO4)2.6H2O на самом деле [Mg(H2O)6](ClO4)2;
BeSO4.4H2O на самом деле [Be(H2O)4]SO4;
Zn(BrO3)2.6H2O на самом деле [Zn(H2O)6](BrO3)2;
CuSO4.5H2O на самом деле [Cu(H2O)4]SO4.H2O.

2) Гидроксокомплексы, то есть комплексные частицы, в которых в качестве лигандов присутствуют гидроксильные группы, которые до вхождения в состав комплексной частицы были гидроксид-ионами, например: [Zn(OH)4]2, [Cr(OH)6]3, [Pb(OH)3].

Гидроксокомплексы образуются из аквакомплексов, проявляющих свойства катионных кислот:

[Zn(H2O)4]2 + 4OH = [Zn(OH)4]2 + 4H2O

3) Аммиакаты, то есть комплексные частицы, в которых в качестве лигандов присутствуют группы NH3 (до образования комплексной частицы – молекулы аммиака), например: [Cu(NH3)4]2, [Ag(NH3)2], [Co(NH3)6]3.

Аммиакаты также могут быть получены из аквакомплексов, например:

[Cu(H2O)4]2 + 4NH3 = [Cu(NH3)4]2 + 4 H2O

Окраска раствора в этом случае меняется с голубой до ультрамариновой.

4) Ацидокомплексы, то есть комплексные частицы, в которых в качестве лигандов присутствуют кислотные остатки как бескислородных, так и кислородсодержащих кислот (до образования комплексной частицы – анионы, например: Cl, Br, I, CN, S2, NO2, S2O32, CO32, C2O42 и т. п.).

Примеры образования ацидокомплексов:

Hg2 + 4I = [HgI4]2
AgBr + 2S2O32 = [Ag(S2O3)2]3 + Br

Последняя реакция используется в фотографии для удаления с фотоматериалов непрореагировавшего бромида серебра.

(При проявлении фотопленки и фотобумаги незасвеченная часть бромида серебра, содержащегося в фотографической эмульсии, не восстанавливается проявителем. Для ее удаления и используют эту реакцию ( процесс носит название "фиксирования", так как неудаленный бромид серебра в дальнейшем на свету постепенно разлагается, разрушая изображение)

5) Комплексы, в которых лигандами являются атомы водорода, делятся на две совершенно разные группы: гидридные комплексы и комплексы, входящие в состав ониевых соединений.

При образовании гидридных комплексов – [BH4], [AlH4], [GaH4] – центральный атом является акцептором электронов, а донором – гидридный ион. Степень окисления атомов водорода в этих комплексах равна –1.

В ониевых комплексах центральный атом является донором электронов, а акцептором – атом водорода в степени окисления +1. Примеры: H3O или [OH3] – ион оксония, NH4 или [NH4] – ион аммония. Кроме того существуют и замещенные производные таких ионов: [N(CH3)4] – ион тетраметиламмония, [As(C6H5)4] – ион тетрафениларсония, [OH(C2H5)2] – ион диэтилоксония и т. п.

6) Карбонильные комплексы – комплексы, в которых в качестве лигандов присутствуют группы CO (до образования комплекса – молекулы монооксида углерода), например: [Cr(CO)6], [Fe(CO)5], [Ni(CO)4] и др.

7) Анионгалогенатные комплексы – комплексы типа [I(I)2].

По типу лигандов выделяют и другие классы комплексных частиц. Кроме того существуют комплексные частицы с различными по типу лигандами; простейший пример – аква-гидроксокомплекс [Zn(H2O)3(OH)].

Таким образом, комплексные соединения могут быть весьма разнообразны, так и химия комплексных соединений.

К.х.н. О. В. Мосин

 

Источники:

www.chem.msu.su/rus/school/zhukov/17.html

www.alhimik.ru/compl_soed/gl_1.htm#11