Турбулентность

Динамика жидкости основана на изучении сравнительно простых течений: свободных струй и следов, пограничных слоев, прилегающих к твердой поверхности, течений в прямых трубах и плоских каналах. Эти классические течения образуют специальный случай и могут быть отнесены к течениям в пограничных слоях или (более общо) к двумерным потокам.

При переходе к турбулентности нужно проявлять осторожность, когда имеется среднее двумерное течение, так как на самом деле турбулентное движение остается полностью трехмерным.

  • СПИСОК Литературы - изучение турбулентности

    1. 1. Avellaneda M., Majda A.J. 1992. Phys. Fluids A 4. 41.

    2. 2. Bakewell H.P., Lumley J.L. 1967. Phys. Fluids 10. 1880.

    3. 3. Balescu R., Senatorski A 1970. Ann. Phys. NY 58. 587.

    4. 4. Balescu R. 1975 Equilibrium and Nonequilibrium Statistical Mechanics (New York: Wiley)

    5. 5. Bazdenkov S.V., Kukharkin N.N. 1993 Phys. Fluids A 5. 2248.

    6. 6. Batchelor G.K. 1952. Proc. Roy. Soc. A. 213. 349.

    7. 7. Batchelor G.K. 1967. An Introduction to Fluid Dynamics (Cambridge: Cambridge University Press)

    8. 8. Batchelor G.K. 1971. The Theory of Homogeneous Turbulence 2nd edn (Cambridge: Cambridge University Press)

  • О турбулентности

    В предыдущих пунктах нами рассмотрены возможности методов перенормировки при создании теории турбулентности. Теперь мы сделаем попытку оценить успешность этих теорий. Фактически это означает, что мы хотим сравнить их предсказания с результатами, полученными из эксперимента. А под экспериментами будем подразумевать не только течения жидкости в лабораторных условиях или в естественных природных условиях, но также результаты прямого численного моделирования уравнений Навье Стокса на компьютерах.

  •                  

  • Ренормализационная группа (RG)

    Магнетизм возникает из-за того, что спины в узлах решетки выстраиваются друг за другом. Эта тенденция спинов к упорядочению противоположна тепловому воздействию, которое стремится создать беспорядок. Упорядочение возникает в виде случайной флуктуации на масштабах длин, изменяющихся от шага решетки (L0) до некоторой корреляционной длины (скажем, x). Корреляционная длина зависит от температуры и становится бесконечной при температуре Кюри (или в критической точке). В критической точке появляются флуктуации всех масштабов от L0 до размеров образца, поэтому наступает полная всеобщая магнетизация.

    Теоретическая задача состоит в том, чтобы вычислить гамильтониан (и, следовательно, термодинамические свойства материала), который содержит члены взаимодействия в виде суммы по всем конфигурациям спинового взаимодействия. Тот факт, что все длины (в принципе) одинаково важны, вносит трудность, связанную с вопросом, с каких масштабов начать. Конечно, если некоторые масштабы исключены, то каким-то способом их влияние должно быть сохранено.

  • Перенормировочная теория возмущений

    В этом пункте мы будем обращаться с проблемой замыкания моментов в теории турбулентности очень специфично. Начнем с общего формализма, часто называемого «лямбда-разложением», а затем продолжим рассмотрение конкретных теорий. Эти теории разделены на два класса. Сначала рассмотрим теории, которые несовместимы с колмогоровским распределением энергии по волновым числам, а затем те, которые совместимы.

    Начать можно с того, что методы, которые мы обсуждаем, впервые появились в теории многих тел статистической физики. Для того чтобы дать представление об общем методе, рассмотрим случай реального газа, который лишь слегка неидеален. Очевидно, существует искушение представить это как возмущение идеального газа, в котором составляющие его частицы не взаимодействуют друг с другом. В микроскопической физике основной величиной, позволяющей нам вычислить статистическую сумму, является гамильтониан. Из статистической суммы находятся макроскопические свойства системы. Для идеального газа гамильтониан может быть записан как в виде суммы гамильтонианов отдельных частиц, т. е.

  • Турбулентность как ветвь статистической физики

    В этом пункте мы будем следовать схеме изложения, сходной со схемой пункта 2, интересуясь главным образом структурными основами турбулентности. То есть рассмотрим корреляции скоростей в двух или более точках (и моментах времени), тогда как в пункте 2 рассматривались только одноточечные корреляции. Основы такого подхода изложены Тейлором (1935) в статье, в которой были введены также понятия статистической однородности и изотропии, шаг, который перевел теорию турбулентности из разряда инженерной науки в разряд области физики. В следующей работе [Тейлор, 1938а] было завершено определение энергетического спектра через волновые числа (т. е. использовано преобразование Фурье от двухточечной пространственной корреляции), и, как мы теперь понимаем, вычисление этого спектра является главной целью фундаментальной теории турбулентности.

  • Турбулентность как естественное состояние течения жидкости

    Динамика жидкости основана на изучении сравнительно простых течений: свободных струй и следов, пограничных слоев, прилегающих к твердой поверхности, течений в прямых трубах и плоских каналах. Эти классические течения образуют специальный случай и могут быть отнесены к течениям в пограничных слоях или (более общо) к двумерным потокам. При переходе к турбулентности нужно проявлять осторожность, когда имеется среднее двумерное течение, так как на самом деле турбулентное движение остается полностью трехмерным.

    Для того чтобы представить непосредственно суть турбулентности как основного явления движения жидкости, рассмотрим стационарное среднее течение в плоском канале в качестве представительного примера. Кроме того, поскольку динамика жидкости не включается в обычный курс физики, мы начнем с краткого введения в математическое описание движения жидкости на уровне уравнений и рассмотрим способы их применения к простым ламинарным течениям.

  • Современные методы исследования турбулентности

    Турбулентное движение жидкости является весьма привлекательной проблемой для исследователей. Турбулентное движение можно наблюдать очень часто в повседневной жизни, а, кроме того, для описания этого движения теоретически мы должны обратиться за помощью к квантовой теории поля. Последнее обстоятельство делает турбулентность предметом внимания все большего числа физиков-теоретиков.

  • Турбулентность

    Федеральное агентство по образованию

    Государственное образовательное учреждение

    высшего профессионального образования

    московский физико-технический институт

    (государственный университет)

    ЛЕКЦИИ

    ПО ТЕОРЕТИЧЕСКИМ МЕТОДАМ

    ИССЛЕДОВАНИЯ ТУРБУЛЕНТНОСТИ